

PAQUETE DIDÁCTICO DE LA ASIGNATURA "TERMOFLUIDOS" DE LA LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ DEL CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO

Presenta: I.Q.I. Liliana Jazmín Chan Catzin

Trabajo terminal elaborado para obtener el diploma de Especialista en Docencia

Dirigida por:

Dr. Galo Emanuel López Gamboa

Mérida, Yucatán Junio de 2021

CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO" INCORPORADA A LA SEP LICENCIATURA EN INGENIERÍA INDUSTRIAL Y LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ

Dr. Pedro José Canto Herrera Director(a) de la Facultad de EducaciónUniversidad Autónoma de Yucatán PRESENTE.

ntro Universitario

ASUNTO: Liberación de la práctica profesional supervisada.

Por este medio me permito informarle que Liliana Jazmín Chan Catzin, estudiante de la Especialización en Docencia, ha desarrollado y concluido satisfactoriamente en esta institución, la práctica profesional supervisada denominada "Paquete didáctico de la asignatura "Termofluidos" de la licenciatura en Ingeniería Mecánica Automotriz del Centro Universitario República de México". Asimismo, le comunico que el practicante cumplió satisfactoriamente con todas las actividades planificadas y con la calidad esperada para la mejora de nuestros procesos.

A solicitud del interesado y para los fines correspondientes, se expide la presente en la Ciudad de Mérida, Capital del Estado de Yucatán, Estados Unidos Mexicanos a los 18 días del mes de junio del año 2021.

Atentamente

Dr. Manuel Jesús Herrera Cetina

DIRECCIÓN ACADEMICA Acuerdos No. 20150021 M.E.S.C. 20150022 M.A.D. SEP

C. DRA. EDITH JULIANA CISNEROS CHACÓN

Jefe de la Unidad de Posgrado e Investigación Facultad de Educación, Universidad Autónoma de Yucatán Presente.

Los abajo firmantes, integrantes del Comité Revisor nombrado por la Dirección de la Facultad de Educación y en respuesta a su solicitud de revisar el Trabajo Terminal:

"PAQUETE DIDÁCTICO DE LA ASIGNATURA "TERMOFLUIDOS" DE LA LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ DEL CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO".

presentado por Liliana Jazmín Chan Catzin, como parte del programa de Práctica Docente II del Plan de Estudios aprobado por el H. Consejo Universitario de la Universidad Autónoma de Yucatán, para obtener el diploma de Especialista en Docencia, le comunicamos que cumple con los requisitos de contenido y presentación establecidos por este Comité y por el Comité Académico de la Especialización en Docencia; y después de la defensa del mismo, el dictamen que emitimos es de:

APROBADO

Por lo que puede realizar los trámites administrativos correspondientes para la obtención del diploma y cédula que lo acrediten.

> Atentamente, **EL COMITÉ REVISOR**

Dr. Pedro José Canto Herrera Miembro propietario

Dr. Alfredo Zapata González Miembro propietario

C.c.p. Secretaria Administrativa C.c.p. Archivo de la Coordinación de la Especialización en Docercia / UPI C.c.p. Pofesor(a) de la Practica Docertie II C.c.p. Interesado

C. DRA. EDITH JULIANA CISNEROS CHACÓN

Jefe de la Unidad de Posgrado e Investigación Facultad de Educación, Universidad Autónoma de Yucatán P r e s e n t e.

ASUNTO: Dictamen de evaluación de trabajo terminal.

Por este medio, como respuesta a su invitación y solicitud de evaluar el trabajo terminal denominado:

"PAQUETE DIDÁCTICO DE LA ASIGNATURA "TERMOFLUIDOS" DE LA LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ DEL CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO",

presentado por I.Q.I. LILIANA JAZMÍN CHAN CATZIN, como producto del Programa Educativo de Posgrado: ESPECIALIZACIÓN EN DOCENCIA que se imparte en la Facultad de Educación, cuyo plan de estudios ha sido aprobado por el H. Consejo Universitario de la Universidad Autónoma de Yucatán, para obtener el diploma de Especialista en Docencia, le comunico que cumple con los indicadores de contenido y presentación, especificados para su evaluación, y constituye una herramienta de calidad, así como una aportación al conocimiento y práctica de la labor docente, por lo tanto el dictamen que emito es de:

APROBADO

Para los fines correspondientes, se expide el presente dictamen en la Ciudad de Mérida, Capital del Estado de Yucatán, Estados Unidos Mexicanos a los 14 días del mes de junio del año 2021.

Atentamente,

Evaluador del trabajo terminal

"POR MI RAZA HABLARÁ EL ESPIRITÚ"

DR. JORGE MAXIMILIANO UUH SONDA Profesor de Asignatura "A"

473-119-67-00

Asunto: Dictamen de evaluación de trabajo terminal. Mérida, Yucatán a 18 de junio de 2021

C. DRA. EDITH JULIANA CISNEROS CHACÓN JEFA DE LA UNIDAD DE POSGRADO E INVESTIGACIÓN FACULTAD DE EDUCACIÓN, UNIVERSIDAD AUTÓNOMA DE YUCATÁN PRESENTE.

Por este medio, como respuesta a su invitación y solicitud de evaluar el trabajo terminal denominado:

"Paquete didáctico de la asignatura Termofluidos' de la Licenciatura en Ingeniería Mecánica Automotriz del Centro Universitario República de México",

presentado por **Liliana Jazmín Chan Catzin**, como producto del Programa Educativo de Posgrado: **ESPECIALIZACIÓN EN DOCENCIA** que se imparte en la Facultad de Educación, cuyo plan de estudios ha sido aprobado por el H. Consejo Universitario de la Universidad Autónoma de Yucatán, para obtener el diploma de *Especialista en Docencia*, le comunico que cumple con los indicadores de contenido y presentación, especificados para su evaluación, y constituye una herramienta de calidad, así como una aportación al conocimiento y práctica de la labor docente, por lo tanto el dictamen que emito es de:

APROBADO

Para los fines correspondientes, se expide el presente dictamen en la Ciudad de Mérida, Capital del Estado de Yucatán, Estados Unidos Mexicanos, a los dieciocho días del mes de junio del año 2021.

Atentamente,

Mtro. Jairo Miguel Aban Zapata, Evaluador del trabajo terminal

Correo electrónico: jairoaban94@hotmail.com; Tel. (999) 930 3595, ext. 42530

Declaratoria de responsabilidad

"Aunque un trabajo de examen profesional hubiera servido para este propósito y fuera aprobado por el sínodo, sólo su autor es responsable de las doctrinas emitidas en él".

> Artículo 74 Reglamento interior Facultad de Educación

Declaratoria de originalidad

Declaro que este proyecto es mi propio trabajo, con excepción de las citas en las que he dado crédito a sus autores; asimismo, afirmo que este trabajo no ha sido presentado para la obtención de algún título, grado académico o equivalente.

Liliana Jazmín Chan Catzin

Agradezco el apoyo brindado por el Consejo
Nacional de Ciencia y Tecnología (CONACYT) al
haberme otorgado la beca No. 1089946 durante el
periodo de septiembre de 2020 a agosto de 2021 para la
realización de mis estudios de posgrado que
concluyen con esta Memoria de Práctica
Profesional, como producto final de la Especialización en
Docencia de la Universidad Autónoma
de Yucatán

Resumen

El siguiente trabajo describe la metodología, estructura, diseño y contenido de la creación de un paquete didáctico para la enseñanza de la asignatura "Termofluidos", misma que se imparte en la licenciatura en Ingeniería Mecánica Automotriz, del Centro Universitario República de México.

Un paquete didáctico se conforma de un conjunto de materiales, métodos, contenidos y actividades para la correcta administración del currículo, por tal motivo, este trabajo se ha realizado pensando en la significación del aprendizaje de los estudiantes. Para lograrlo se hace uso de una diversidad de estrategias y recursos virtuales con el objetivo de hacer que la asignatura sea percibida como dinámica e innovadora.

Se utiliza un enfoque constructivista para el diseño de las actividades de clase, de esta manera se pretende que el alumno sea el actor principal en el proceso de adquisición de los conocimientos. El constructivismo a nivel superior impulsa al estudiante al aprendizaje autónomo e independiente, es por eso que, este enfoque pretende fomentar profesionales competentes y aptos para el desarrollo laboral.

Por último, cabe destacar que el producto final está diseñado para impartir un curso en modalidad presencial, sin embargo, las tareas y actividades pueden ser ajustadas sin problemas para una enseñanza virtual.

Tabla de contenido

Capítulo I. Introducción/5 Manual de operaciones/5 Presentación del curso/5 Descripción del programa/8 Capítulo II. Avances programáticos (planeación didáctica) /11 Capítulo III. Planes de sesión Unidad I/23 Unidad II/27 Unidad III/32 Unidad IV/35 Unidad V/40 Capítulo IV. Actividades de aprendizaje (ADA) Unidad 1 ADA 1/46 ADA 2/48 Unidad II ADA 3/49 ADA 4/50 ADA 5/51 Unidad III ADA 6/53 ADA 7/54 Unidad IV ADA 8/55 ADA 9/56 ADA 10/57 Unidad V

ADA 11/59

ADA 12/60

Capítulo V. Material audiovisual

Unidad /62

Unidad 2/70

Unidad 3/78

Unidad 4/82

Unidad 5/90

Capítulo VI. Evaluaciones

Bimestre /99

Bimestre 2/105

Ordinario/109

SECCIÓN 1: MANUAL DE OPERACIONES

Introducción

El estudio de la Termodinámica es de gran importancia en el ámbito de ingeniería, ya que esta ciencia se toma como fundamento para el estudio de otras disciplinas como la mecánica de fluidos, los fenómenos de transporte y para la comprensión de la físico-química.

La asignatura "Termofluidos" debe su nombre al estudio termodinámico de sustancias conocidas como líquidos y gases, para el contexto en la "Ingeniería Mecánica Automotriz" es una materia que lleva al estudiante al conocimiento y profundización de los ciclos en motores, motivo por el cuál, el aprendizaje y comprensión de los contenidos abordados en el presente paquete didáctico son parte de su formación integral como futuro profesionista.

Manual de operaciones

Presentación del paquete didáctico

El presente paquete didáctico es correspondiente a la asignatura de "*Termofluidos*" de la licenciatura en Ingeniería en Mecánica Automotriz de la Universidad República de México cursada en el sexto cuatrimestre de acuerdo con el mapa curricular.

La organización del paquete didáctico ha sido estructurada para una modalidad presencial con un total de 102 horas, 53 horas presenciales y 49 no presenciales.

Se pretende que su estructura sea enfocada hacia objetivos de aprendizaje con estrategias que orienten hacia un enfoque constructivista tomando como eje central el objetivo general de la asignatura: "Aplicará los principios y las leyes fundamentales de la termodinámica, la mecánica de fluidos y la transferencia de calor a partir del análisis de sus funciones para proponer soluciones dentro del campo de la mecatrónica."

De esta manera el estudiante sabrá determinar y analizar las condiciones óptimas para el buen funcionamiento de los procesos termodinámicos aplicados a maquinaria correspondiente a su área, tomando como base fundamental los principios y conceptos estudiados.

Por tal motivo las actividades están diseñadas de manera que se facilite la construcción del aprendizaje significativo en los estudiantes, haciendo con amplio uso de recursos de TIC para hacer más atractiva, dinámica, e innovadora la concepción de los temas.

La asignatura consta de 5 unidades que van representando un reto cognitivo para los estudiantes conforme a los contenidos temáticos. A continuación, se menciona brevemente la descripción de cada uno:

La unidad 1 corresponde a una introducción a la materia, partiendo de conceptos básicos y terminología necesaria para el entendimiento del curso, se retoman subtemas vistos con anterioridad en cursos de física, con el objetivo de que el alumno repase y contextualice los contenidos hacia las siguientes unidades.

La unidad 2 encamina hacia el estudio de los cambios de fase de las sustancias puras, en donde el alumno tendrá conocimiento y aprenderá a leer los diagramas de Presión, Volumen y Temperatura que seguirán siendo de uso cotidiano en el estudio de la asignatura.

La unidad 3 nos introduce al concepto del estudio de gases y su comportamiento ante las variables termodinámicas (P, V y T), los cuáles, son fundamentales para predecir cambios y resolver problemas aplicados a los sistemas termodinámicos.

La unidad 4 se enfoca al estudio de la primera ley de la termodinámica, en ella se utilizan conceptos y leyes de las unidades anteriores, las cuáles se integran para poder enunciar sus principios y bases.

Por último, la unidad 5 conlleva a entender la segunda ley de la termodinámica, en ella el estudiante aprende términos completamente nuevos, como los ciclos de Carnot y las máquinas térmicas. En estos subtemas es de suma importancia que el estudiante haya adquirido los conocimientos básicos de las unidades previas para conjuntarlas y poder hacer uso de cálculos de eficiencia, a su vez, esto le permitirá entender los ciclos de trabajo de las máquinas de ingeniería. Para poder ejecutar lo anteriormente mencionado, este paquete está conformado por los siguientes elementos:

Avances programáticos: corresponde a la planeación didáctica de la asignatura, misma que se estructura con el formato especificado por la universidad, en el cual se desglosa por número y fecha de las sesiones, así como las estrategias de enseñanza, actividades de aprendizaje y recursos empleados. Está programado para el curso del año 2021 y contiene también la descripción de los criterios de evaluación empleados para cuantificar la asignatura.

Planes de sesión: consta de la descripción detallada de las actividades de clase con respecto al tiempo asignado para cada una, así como los temas por abordar y los objetivos planteados por sesión, incluye la integración de las ADA y los recursos y materiales empleados. Abordan un total de 53 horas presenciales divididos en sesiones de 2 horas cumpliendo con el plan de estudios.

Actividades de aprendizaje: contiene 12 ADA que se realizan de 2 actividades por unidad; el nivel y la dificultad de estas, se basa en un aprendizaje teórico-analítico-constructivo, por lo que en la última unidad del curso el estudiante deberá crear un prototipo de máquina térmica para poder evidenciar su aprendizaje.

Material audiovisual: Se conforma de material creado en presentaciones de Power Point, carteles e infografías virtuales que sirven de apoyo en la exposición de la clase para los estudiantes, cada presentación aborda el tema correspondiente a una unidad. Incluye documentos y enlaces externos para el estudio independiente del alumno y también se agregan actividades de clase, las cuáles constituyen parte del desarrollo formativo del estudiante, sin embargo, estás no forman parte de la evaluación sumativa.

Evaluaciones: Se presentan los lineamientos para las pruebas escritas correspondientes a los parciales 1 y el ordinario, además de las especificaciones para la entrega y desarrollo del proyecto experimental correspondiente a la evaluación del parcial 2.

En cuanto a la dinámica del curso, se sugiere seguir los lineamientos de los materiales audiovisuales, ya que en ellos, se marca la pauta de los tiempos y actividades de cada sesión, así como la revisión y seguimiento de las ADA, también se recomienda utilizar en conjunto el libro de Cengel Yunus, "Termodinámica", séptima edición, editorial McGraw Hill ya que la información general se encuentra tomada con base en esa referencia, de esta manera se puede enriquecer el dominio y flujo de las explicaciones en las clases impartidas por el docente.

Descripción del programa

A continuación, se desagregan los contenidos de la asignatura que serán empleados en el diseño del paquete didáctico:

NOMBRE DE LA ASIGNATURA
TERMOFLUIDOS

CICLO 6° CUATRIMESTRE

CLAVE DE LA ASIGNATURA MA603

COMPETENCIA GENERAL DE LA ASIGNATURA

Aplicar los principios y las leyes fundamentales de la termodinámica a través del razonamiento lógico para la correcta toma de decisiones en la solución de problemas dentro del campo de la ingeniería.

MODALIDAD: Presencial, teórico-práctica.

SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

HORAS CON DOCENTE: 49 horas

HORAS DE ESTUDIO INDEPENDIENTE: 49 horas

HORAS SEMANALES: 4 horas

TEMAS Y SUBTEMAS

1. CONCEPTOS BÁSICOS DE TERMODINÁMICA

- 1.1 Sistemas de unidades
- 1.2 Definiciones: sistemas, fronteras, equilibrio, estado, proceso y variables termodinámicas.
- 1.3 Variables termodinámicas intensivas y extensivas (energía, volumen específico, peso específico, gravedad específica, presión, volumen y temperatura)
- 1.4 Funciones y variables de estado
- 1.5 Ley cero de la termodinámica
- 1.6 Escalas termométricas (temperatura relativa y absoluta)

2. PROPIEDADES DE UNA SUSTANCIA PURA

- 2.1 Definición de una sustancia pura.
- 2.2 Estados de la materia
- 2.3 Procesos de cambio de fase: líquido comprimido y líquido saturado, vapor saturado y vapor sobrecalentado
- 2.4 Diagramas de fase tridimensionales (P, V, T). Punto crítico y punto triple. La calidad.
- 2.5 Concepto de entalpía
- 2.6 Estructura de las tablas de propiedades (P,V,T,u y h) termodinámicas de algunas sustancias de trabajo, como el agua y algunos refrigerantes: interpolación y extrapolación lineal.
- 3. GASES IDEALES
- 3.1 Definición de gas ideal

- 3.2 Ley de Boyle Mariotte
- 3.3 Ley de Charles y Gay Lussac
- 3.4 Ley de presiones
- 3.5 Relación de estas leyes en un diagrama (V, P) para la obtención de la ecuación de estado de los gases ideales.
- 3.6 Ley general de gases Ideales

4. CONSERVACIÓN DE LA MASA Y DE LA ENERGÍA. PRIMERA LEY DE LA TERMODINÁMICA

- 4.1 Concepto de calor
- 4.2 Capacidad térmica específica. Convención de signos.
- 4.3 Concepto de trabajo: Trabajo de eje, trabajo de flujo y trabajo cuasiestático de una sustancia simple compresible.
- 4.4 El experimento de Joule, relación entre calor y trabajo.
- 4.5 Primera Ley de la Termodinámica. El principio de conservación de la energía. Balances de masa y energía en sistemas cerrados y abiertos.
- 4.6 Ecuaciones de balance de energía en sistemas cerrados. Ecuaciones de balance de masa y energía en sistemas abiertos bajo régimen estable, permanente o estacionario, régimen uniforme y en fluidos incompresibles. Balances en sistemas que realizan ciclos. Eficiencia térmica.
- 4.7 La energía interna y el calor a volumen constante: la capacidad térmica específica a volumen constante (cv). La entalpia y el calor a presión constante: la capacidad térmica específica a presión constante (cp).

5. SEGUNDA LEY DE LA TERMODINÁMICA

- 5.1 Segunda ley de termodinámica
- 5.2 Enunciados Segunda Ley: Kelvin-Planck y clausius
- 5.3 Irreversibilidad
- 5.4 Ciclo de carnot
- 5.5 Ciclo de carnot negativo
- 5.6 Entropía
- 5.7 Cambio de entropía en el universo
- 5.8 Rendimiento isentròpico

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Evaluación de desempeño cuatrimestral				
Evaluación de proceso	Bimestre 1: 35%			
	Bimestre 2: 35%			
Evaluación de producto	Ordinario: 30%			
Total	100%			

SECCIÓN 2: AVANCES PROGRAMÁTICOS (PLANEACIÓN DIDÁCTICA)

Avances programáticos

SECRETARIA DE EDUCACIÓN
CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO
LICENCIATURA EN INGENIERIA MECANICA AUTOMOTRIZ
Y LICENCIATURA EN INGENIERIA INDUSTRIAL
CICLO ESCOLAR 2021 - 2022
AVANCE PROGRAMÁTICO

Nombre Del Maestro (a): Liliana Jazmín Chan Catzin
Asignatura: Termofluidos Programa Académico: Ingeniería en Mecánica Automotriz
Cuatrimestre/Semestre: 6to unidades: 5

Semana	Fecha	Temas y Subtemas de la Unidad	Objetivos	No. De Hrs.	Métodos de Enseñanza (TEORÍA-PRÁCTICA)
1	3-7 de mayo 2021	CONCEPTOS BÁSICOS DE TERMODINÁMICA Sistemas de unidades. Definiciones: sistemas, fronteras, equilibrio, estado, proceso y variables termodinámicas. Variables termodinámicas intensivas y extensivas (energía, volumen específico, peso específico, gravedad	Interpreta la variación de las propiedades termodinámicas mediante cálculos que impliquen conversiones de unidades del Sistema internacional de Unidades.	3	Aprendizaje guiado Aprendizaje basado en problemas Aprendizaje colaborativo Evidencia de aprendizaje: ADA 1: En binas o trinas resolver los ejercicios del problemario 1, en hojas en blanco. • Entregar en carpeta con los nombres de los integrantes. • Posteriormente explicarás la resolución de uno de los ejercicios en plenaria.

		1	,		
		específica, presión, volumen			Materiales y métodos:
		y temperatura).			
					Simulador online:
					https://phet.colorado.edu/sims/html/energy-forms-and-
					changes/latest/energy-forms-and-changes_es.html
					<u>changes/fatest/energy-forms-and-changes_es.html</u>
					Documento: Problemario 1. Basado en el libro de Cengel
					y Boyle (2012). <i>Termodinámica</i> . 7ma edición. McGraw
					Hill. Pp. 40-42
					Estrategias:
					Aprendizaje mediado por las TICS Aprendizaje colaborativo
		1.4 Funciones y variables de			Evidencia de aprendizaje:
2	10-14 de mayo 2021	estado. 1.5 Ley cero de la termodinámica. 1.6 Escalas termométricas (temperatura relativa y absoluta).		4	ADA 2: Práctica 1: Termometría. Realizar en equipos de cuatro integrantes y entregar impreso. En el simulador para la práctica se usarán las siguientes sustancias: • Equipo 1: Agua • Equipo 2: Alcohol • Equipo 3: Benceno

	17-21 de	2. PROPIEDADES DE UNA SUSTANCIA PURA 2.1 Definición de una sustancia pura. 2.2 Estados de la materia	Identifica los diferentes cambios y fases de las sustancias	4	Recursos y materiales: Simulador Online: Curva de calentamiento T f(t) Estrategias: Aprendizaje colaborativo Aprendizaje mediado por TICS. Aprendizaje autónomo Evidencia de aprendizaje: ADA 3: En equipos de 3 a 4 integrantes realizar una exposición digital de acuerdo con los temas asignados: • Equipo 1: Mezcla saturada de líquido vapor.
3	mayo 2021	2.3 Procesos de cambio de fase: líquido comprimido y líquido saturado, vapor saturado y vapor sobrecalentado.	diagramas de fase y tablas de		 Equipo 1: Mezeta saturada de riquido vapor. Equipo 2: Vapor sobrecalentado. Equipos 3: Líquido comprimido. Todas las exposiciones deben contener estos puntos en común. Definición y características. Ejemplos ilustrativos 2 ejercicios resueltos paso a paso. Recursos y métodos:

4	24-28 de mayo 2021	2.4 Diagramas de fase tridimensionales (P, V, T). Punto crítico y punto triple. 2.5 Concepto de entalpía	4	Libro/ fuente de información: Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México. Estrategias: Aprendizaje colaborativo Aprendizaje mediado por TICS Aprendizaje autónomo y reflexivo Evidencia de aprendizaje: ADA 4: En equipos de tres integrantes elabora un cartel interactivo usando CANVAS o GENIALLY donde expliques el concepto de entalpía. • Debes investigar al menos en tres fuentes diferentes, anexarlas y adicionalmente escribir tu propio concepto de entalpía. • Proporciona mínimo dos ejemplos aplicados a la vida cotidiana sobre este concepto (elabora un video documental de 3 a 5 minutos para este paso). • Presenta tu cartel en plenaria. Recursos y materiales Canvas: https://www.canva.com/es_mx/

					Libro/ fuente de información: Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México. Estrategias: Aprendizaje colaborativo Aprendizaje basado en problemas Aprendizaje autónomo y reflexivo
5	31 de mayo al 4 de junio de 2021	sustancias de trabajo, como el		4	Evidencia de aprendizaje: ADA 5: En equipos de tres a cuatro integrantes resolver los ejercicios del problemario #2, en hojas en blanco. *Entregar en carpeta con los nombres de los integrantes. *Posteriormente un integrante del equipo pasará a explicar la resolución de uno de los ejercicios en plenaria. Recursos y materiales: Documento: Problemario #2 basado en el libro de Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. Pp. 154-156.
6	7-11 de junio de 2021	3. GASES IDEALES 3.1 Definición de gas ideal 3.2 Ley de Boyle - Mariotte 3.3 Ley de Charles y Gay – Lussac	Analiza el comportamiento de la materia en fase gaseosa a partir de la ecuación del gas ideal.	4	Estrategias: Aprendizaje colaborativo Aprendizaje autónomo Aprendizaje por medio de TICS Evidencia de aprendizaje:

u o e	3.4 Relación de estas leyes en un diagrama (V, P) para la obtención de la ecuación de estado de los gases ideales. 3.5 Ley general de gases		ADA 6: En equipos de 3 a 4 integrantes: Elabora una exposición digital. Los siguientes lineamientos son para todos los equipos: 1. Tema: Gases ideales Concepto y características de un gas ideal (Todos los equipos). Ecuaciones y un ejercicio resuelto (de acuerdo con su tema). Equipo1: Ley de Boyle Equipo 2: Ley de Charles Equipo 3: Ley de Gay-Lussac Equipo 4: Ley general del estado gaseoso 2. Realiza un experimento casero donde demuestres estos conceptos y presentalo en plenaria junto con tu presentación digital. Recursos y materiales: Libro/ fuente de información: Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México. Libro/ fuente de información: Pérez Montiel Hector (2014). Física General. 1ra edición. Grupo editorial Patria
/	deales	4	Listrategia de aprendizaje.

	14-18 de junio de 2021	3.6 Energía interna, entalpía y calores específicos de los gases ideales			Aprendizaje basado en problemas Aprendizaje colaborativo Evidencia de aprendizaje: ADA 7: En binas o trinas resolver los ejercicios del problemario #3, en hojas en blanco. • Entregar en carpeta con los nombres de los integrantes. • Posteriormente un integrante del equipo pasará a explicar la resolución de uno de los ejercicios en plenaria. Recursos y materiales: Problemario 3; basado en Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México. P. 158.
8	21-25 de junio de 2021	4. CONSERVACIÓN DE LA MASA Y DE LA ENERGÍA. PRIMERA LEY DE LA TERMODINÁMICA 4.1 Concepto de calor 4.2 Capacidad térmica específica. Convención de signos.	de energía en sistemas cerrados y abiertos de dispositivos técnicos de	4	Estrategia: Aprendizaje mediado por TICS Simulaciones Aprendizaje colaborativo Evidencia de aprendizaje: ADA 8: Práctica 2: Calorimetría. Realizar en equipos de cuatro integrantes y entregar impreso.

	4.3 Concepto de trabajo: Trabajo de eje, trabajo de flujo y trabajo cuasiestático de una sustancia simple compresible. 4.4 El experimento de Joule, relación entre calor y trabajo.		Posteriormente comentar en clase los resultados obtenidos. Recursos y materiales: Laboratorio virtual: https://labovirtual.blogspot.com/search/label/equilibrio-w20t%C3%A9rmico
28 de junio al 2 de julio de 2021	4.5 Primera Ley de la Termodinámica. El principio de conservación de la energía. Balances de masa y energía en sistemas cerrados y abiertos.	4	Uso de organizadores gráficos Aprendizaje colaborativo Aprendizaje por medio de TICS Evidencia de aprendizaje: ADA 9: En equipos de 3 a 4 integrantes elabora un cuadro sinóptico interactivo (Canvas, Genially o el recurso de tu preferencia) explicando la primera ley de la termodinámica (relación, energía, trabajo y calor) y ejemplos. • Incluye un video de un experimento simple donde se aprecie la aplicación de la primera ley (3 a 5 minutos máximo). • Presenta en un documento de Word, dos ejercicios resueltos sobre esta ley. • Posteriormente presenta tu cuadro sinóptico frente al grupo.

			Recursos y materiales:
			Canvas: https://www.canva.com/es_mx/ Genially: https://www.genial.ly/ Editor de videos: https://vimeo.com/es/ Libro/ fuente de información: Cengel y Boyle (2012) Termodinámica. 7ma edición. McGraw Hill. México.
10	5-9 de julio de 2021	4.6 Ecuaciones de balance de energía en sistemas cerrados. Ecuaciones de balance de masa y energía en sistemas abiertos bajo régimen estable, permanente o estacionario, régimen uniforme y en fluidos incompresibles. Balances en sistemas que realizan ciclos. Eficiencia térmica.	4 Estrategias: Aprendizaje colaborativo Aprendizaje basado en problemas Aprendizaje autónomo y reflexivo Evidencia de aprendizaje: ADA 10: En binas o trinas resolver los ejercicios o problemario #4, en hojas en blanco. • Entregar en carpeta con los nombres de l
11	12-16 de Julio de 2021	4.7 La energía interna y el calor a volumen constante: la capacidad térmica específica a volumen constante (cv). La entalpia y el calor a presión constante: la capacidad térmica específica a presión constante (cp	 integrantes. Posteriormente un integrante del equipo pasará explicar la resolución de uno de los ejercicios plenaria. Recursos y materiales

					Cengel y Boyle (2012). <i>Termodinámica</i> . 7ma edición. McGraw Hill. México. Pp. 99. Tippens Paul (2011). <i>Física, conceptos y aplicaciones</i> . 7ma edición. McGraw Hill. México. Pp 422 y 423. Bueche Frederick (2001). <i>Física General</i> . 7ma edición. Pp. 255 y 261. Estrategias:
12 ju	9-23 de ulio de 2021	5. SEGUNDA LEY DE LA TERMODINÁMICA 5.1 Segunda ley de termodinámica 5.2 Enunciados Segunda Ley: Kelvin-Planck y Clausius.	Construye una máquina térmica simple aplicando la segunda ley de la termodinámica con elementos sustentables de manera creativa y funcional.	4	Aprendizaje colaborativo Aprendizaje autónomo Aprendizaje basado en proyectos Investigación documental Evidencia de aprendizaje: ADA 11: En equipos de 3 a 4 integrantes investiga en al menos 3 fuentes distintas el ciclo y proceso de funcionamiento de un motor Stirling. Con base en tus resultados elabora un reporte de investigación con los parámetros establecidos en los lineamientos. Utiliza la información para diseñar un motor Stirling casero, por lo que será necesario que incluyas en tu investigación los materiales que necesitarás para ello.

				Recursos y materiales:
				Documento: Vives Albesa Ángel (2016). <i>Diseño de un motor Stirling</i> . Universidad Politécnica de Catalunya
				Estrategias:
13	26-30 de julio de 2021		4	Aprendizaje colaborativo Aprendizaje autónomo Aprendizaje basado en proyectos Aprendizaje mediado por TICS
				Evidencia de aprendizaje:
14	2-13 de agosto 2021	5.6 Entropía 5.7 Cambio de entropía en el universo 5.8 Rendimiento isentròpico	2	ADA 12: En equipos de 3 a 4 integrantes y con base en los resultados de tu investigación del ADA 9. Construye tu motor Stirling y preséntalo en plenaria, explicando su funcionamiento junto con una presentación en ppt sobre su diseño y cálculos. Elabora una presentación en Power point para complementar tu exposición.

Exámenes primer parcial.	Exámenes segundo parcial	Exámenes ordinarios		
7-18 de junio	16-30 de Julio	2-13 de agosto		
Prueba escrita	Proyecto experimental (construcción de un	Prueba escrita		
	motor Stirling)			

Sistema de Evaluación	Bibliografía.						
Parcial 1 (35%): Examen escrito.	Cengel y Boyle (2012). <i>Termodinámica</i> . 7ma edición. McGraw Hill. México						
Parcial 2 (35%): Proyecto experimental (construcción de un	Kenneth, W. (2001). Termodinámica. España. Mc Graw Hill.						
motor Stirling).	Tipler, P. A. (2010). Física Para la Ciencia y Tecnología. España. Reverté.						
Ordinario (30%): Examen escrito	Fernández, S. H. (2014). <i>Curva de calentamiento</i> [Entrada de Blog]. Obtenido de Laboratorio Virtual: Recuperado el 25 de agosto de 2020 de http://labovirtual.blogspot.com/search/label/Curva%20de%20calentamiento.						

Elaboró		Revisó
I.Q.I. Liliana Jazmín Chan Catzin		(Ing. Israel Colli Godoy)
Docente		Coordinador de ingenierías
	Vo.Bo.	
M.C.O. Ir	ene Valentina Herre	ra Cetina
Γ	Directora Académica	

SECCIÓN 3: PLANES DE SESIÓN

Plan de clase

I INIII) A I D' I	onceptos básicos rmodinámica.	de	OBJETIVO DE LA UNIDAD:	Interpreta la variación de las propiedades termodinámicas mediante cálculos que impliquen conversiones de unidades del Sistema Internacional de Unidades.	
FECHA:			(CONTENIDOS:	
	1 Ciatamas da unidadas				
3-7 de mayo 2021 1.:	 1.1 Sistemas de unidades. 1.2 Definiciones: sistemas, fronteras, equilibrio, estado, proceso y variables termodinámicas. 1.3 Variables termodinámicas intensivas y extensivas (energía, volumen específico, peso específico, gravedad específica, presión, volumen y temperatura). 				
1.:	4 Funciones y variables de 5 Ley cero de la termodiná 6 Escalas termométricas (t	mica.	a relativa y absoluta).	

OBJETIVO DE LA SESIÓN 1: El estudiante explica el concepto de sistema en el ámbito de la termodinámica, así como la variación de sus propiedades, mediante el análisis de distintos objetos de su entorno.

Un sistema Bienvenida, 45 Explicación de glosario 5 Expl	
termodinámico y sus componentes forman parte de un espacio delimitado para el presentación del curso y objetivos (syllabus). presentación del min docente (subtemas 1.1, 1.2 y 1.3). Observatorios del min docente (subtemas 1.1, 1.2 y 1.3). Desprise de un espacio del min docente (subtemas 1.1, 1.2 y 1.3). Desprise de un espacio del min docente (subtemas 1.1, 1.2 y 1.3).	icación de la : ADA 1. Presentación en PPTX. Simulador Online: https://phet.colorado.edu/sims /html/energy-forms-and- changes/latest/energy-forms- and-changes es.html Pizarra Marcadores Laptop con conexión a internet Proyector

TAREA: ADA 1 (Problemario #1).

EVALUACIÓN DEL APRENDIZAJE: Participación en clase.

REFERENCIA: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

OBJETIVO DE LA SESIÓN 2: El alumno analiza y efectúa la resolución de problemas que implican conversiones del sistema internacional de unidades aplicados a las variables termodinámicas a través de la explicación de sus resultados obtenidos.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS	Y
							MATERIALES	
Las propiedades			15	Participación en plenaria por			DIDÁCTICOS	
intensivas y		Bienvenida y breve	min	parte de los alumnos de la			EMPLEADOS	
extensivas de un	10	resumen de la sesión		resolución de los ejercicios del				
sistema	min			ADA 1.	10	Cierre del tema		

termodinámico		anterior por parte del	15		min	por parte	del	Pizarra
permiten definir sus		docente.	min	Realimentación y corrección del		alumno	У	Marcadores
condiciones de				ADA 1.		despedida.		Borrador de pizarrón
trabajo, por lo que es						_		_
importante								
reconocer lo que								
indican dichas								
variaciones.								
FVALUACIÓN DEL APPENDIZA JE: Entrara dal ADA 1 v								

EVALUACION DEL APRENDIZAJE: Entrega del ADA 1 y participación en clase.

REFERENCIAS: Yunus y Boyle (2012). Termodinámica. 7ma edición. Mcgraw Hill.

OBJETIVO DE LA SESIÓN 3: El alumno relaciona la ley cero de la termodinámica con los procesos cotidianos de su entorno a partir de preguntas de análisis en plenaria.

To low some do lo				DESARROLLO		CIERRE	RECURSOS Y
La ley cero de la termodinámica habla del equilibro térmico que se da entre los cuerpos, su importancia radica en la explicación que	10 min 10 min	Bienvenida e introducción al tema por parte del docente. Análisis de ejemplos que relacionan la ley cero de la	40 min	Explicación de las escalas termométricas y resolución de ejercicios de conversión de temperatura y cálculos de calor específico a cargo del docente.	5 min 10 min	Conclusión de la sesión a cargo de los alumnos. Explicación del ADA 2 a cargo de la profesora.	MATERIALES DIDÁCTICOS EMPLEADOS Cartel virtual: https://view.genial.ly/5ff3c04 07b63e00d6e14fb51/horizont al-infographic-review-term
proporciona a los fenómenos cotidianos como el enfriamiento de una taza de café caliente.		termodinámica a cargo de los alumnos.	45 min	Resolución de ejercicios en plenaria por parte de los alumnos con supervisión docente.		F	Presentación en PPTX. Pizarra Marcadores Laptop con/sin conexión a internet Proyector

EVALUACIÓN DEL APRENDIZAJE: Participación en clase.

REFERENCIAS: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

Castellan Gilbert (1986). Fisicoquímica. Segunda edición. Fondo educativo interamericano.

OBJETIVO DE LA SESIÓN 4: El alumno analiza correctamente gráficas de temperatura vs tiempo mediante la realización de una práctica teórico-experimental.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y MATERIALES
Los gráficos de temperatura vs tiempo permiten interpretar el comportamiento y el flujo de calor de los objetos o sustancias, mediante ellos se pueden determinar ecuaciones para	10 min 25 min	Bienvenida y recapitulación de conceptos. Análisis en plenaria de los gráficos percibidos en el ADA 2.	20 min 30 min 10 min	Análisis y discusión en plenaria del cuestionario del ADA 2. Resolución de ejercicios de la unidad 1 en plenaria por parte de los alumnos. Realimentación por parte del docente.	10 min 10 min	Conclusión de la unidad a cargo de los alumnos. Despedida y cierre de unidad por parte de la profesora. Explicación del ADA 3.	MATERIALES DIDÁCTICOS EMPLEADOS Pizarra Marcadores Lap top con/sin conexión a internet Proyector
modelar y predecir su comportamiento.							
TAREA	ADA 3	(Presentaciones en PPT	(X).				

Evaluación del aprendizaje: Entrega de ADA 2 y participación en plenaria.

REFERENCIAS: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

Scherer Leopoldo (2008). *Introducción a la termodinámica clásica*. 1era edición. Trillas.

UNIDAD: 2	Propiedades de una sustancia pura OBJETIVO DE LA UNIDAD: Identifica los diferentes cambios y fases de las sustancias mediante el uso diagramas de fase y tablas de propiedades, de manera coherente
FECHA:	CONTENIDO:
17-21 de mayo 2021 24-28 de mayo	2.3 Procesos de cambio de fase: líquido comprimido y líquido saturado, vapor saturado y vapor sobrecalentado.2.4 Diagramas de fase tridimensionales (P, V, T). Punto crítico y punto triple.
2021 31 de mayo al 4 de junio de 2021	2.6 Estructura de las tablas de propiedades (P, V,T,U y h) termodinámicas de algunas sustancias de trabajo, como el agua y algunos refrigerantes: interpolación y extrapolación lineal.

OBJETIVO DE LA SESIÓN 5: El alumno distingue claramente los tres estados de materia, así como sus cambios de fase por medio de actividades integradoras durante la sesión.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
Una sustancia pura		Bienvenida e	15	Presentación del docente de los		Realimentación	DIDÁCTICOS
es aquella en la que	15	introducción al	min	contenidos 2.1 y 2.2	15	de las	EMPLEADOS
sus moléculas son	min	tema mediante			min	presentaciones	
químicamente		lluvia de ideas de	15	Actividades de reconocimiento		por parte del	Presentación en PPTX.
iguales entre sí,		los estados de la	min	de las sustancias y cambios de		docente.	Simulador online:
solo puede ser		materia.		fase en plenaria.			https://phet.colorado.edu/si
separada mediante						Despedida y	ms/html/states-of-
procesos químicos.			45	Presentaciones del ADA 3 por	5	cierre por parte	matter/latest/states-of-
Toda sustancia	10		min	parte de los alumnos.	min	del profesor.	matter es.html
puede cambiar de	min	Presentación del					Pizarra
fase (líquido,		simulador "Estados					Marcadores
sólido, vapor) por		de la materia".					Laptop con conexión a
lo que se estudiará							internet
el proceso							Proyector
termodinámico que							
está en esos							
cambios de estado.							

EVALUACIÓN DEL APRENDIZAJE: Entrega de ADA 3, lluvia de ideas como participación en clase. | **REFERENCIA:** Cengel y Boyle (2012). *Termodinámica*. 7ma edición. | McGraw Hill. México.

OBJETIVO DE LA SESIÓN 6: El alumnado realiza eficientemente en su libreta problemas teórico-prácticos acerca de las fases de las sustancias para interpretar sus resultados.

	RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS	Y
								MATERIALES	
]	Los estados de		Saludo y	20	Explicación de los cálculos		Realimentación	DIDÁCTICOS	
:	saturación son	5	recapitulación de la	min	para la obtención del calor total	10	de los ejercicios	EMPLEADOS	
;	aquellos en los que	min	sesión anterior.		requerido en un cambio de	min	por parte del		
_1	las sustancias				fase.		facilitador.		

cambian de estado			25				Presentación realizada en
en un proceso	10	Introducción a la	min	Demostración de ejercicios en	10	Explicación de	canvas.
isotérmico, en esta	min	sesión por medio		la pizarra por parte del	min	ADA 4 y cierre	Simulador online:
sesión el alumno		del simulador		profesor.		de tema por	https://phet.colorado.edu/si
realizará el cálculo		"Estados de la	40			parte del	ms/html/states-of-matter-
de la energía y el		materia"	min			profesor.	basics/latest/states-of-
calor necesitados				Resolución de ejercicios de			matter-basics es.html
para dicha				clase en la libreta, a cargo del			Pizarra
transformación.				alumnado.			Marcadores
							Borrador de pizarrón
							Calculadora científica.
							Lap top con conexión a
							internet
							Proyector
TAREA	ADA 4	4 (Cartel sobre entalpía	a)				

EVALUACIÓN DEL APRENDIZAJE: Entrega de ejercicios de clase en la libreta.

REFERENCIAS: Pérez Montiel Héctor (2014). *Física General*. 1ra edición. Grupo editorial Patria.

Smith J.M., Van Ness. H.C. y Abott M. M (1997). *Introducción a la termodinámica en ingeniería química*. Quinta edición. McGraw Hill.

OBJETIVO DE LA SESIÓN 7: El alumno argumenta en una discusión en plenaria sobre los cambios de fase y sus propiedades, haciendo lecturas de diagramas de fase.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y MATERIALES
Los diagramas de fase son	10 min	Saludo y recordatorio de la	15 min	Análisis en grupos de ejemplos de diagramas de fase.	10 min	Despedida y cierre de sesión	DIDÁCTICOS EMPLEADOS
representaciones gráficas sobre el comportamiento de		sesión anterior a cargo de los alumnos.		Explicación en plenaria de la interpretación de ellos.		por parte del profesor.	Presentación en PPTX.

los estados de la	20		10	Realimentación de la actividad	Pizarra
materia, en función	min	Presentación de	min	por parte del docente.	Marcadores
de T, P y V, con		subtemas 2.4 y 2.5			Laptop con/sin conexión a
ellos podemos			45	Presentación de ADA 4 en	internet
determinar sus			min	equipos.	Proyector
cambios de fase y					-
estados de			10	Realimentación de conceptos	
agregación.			min	de parte del docente.	

EVALUACIÓN DEL APRENDIZAJE: Participaciones en plenaria.

REFERENCIAS: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México. Castellan Gilbert (1986). *Fisicoquímica*. Segunda edición. Fondo educativo interamericano.

OBJETIVO DE LA SESIÓN 8: Los estudiantes efectúan correctamente cálculos teóricos que impliquen el uso de entalpía en cambios de fase.

RESUMEN		INICIO		D	ESARROI	LLO			CIERRE	RECURSOS Y		
										MATERIALES		
La entalpía se		Recapitulación de	30	Los estu	diantes res	suelven	, de	15	Explicación del	DIDÁCTICOS		
entiende como el	10	la sesión previa a	min	manera	individual	ejerci	cios	min	uso de tabla de	EMPLEADOS		
calor que se libera	min	cargo del profesor.		de aplica	ción al tem	ıa.			propiedades			
o se necesita en un								5	termodinámicas	Pizarra		
sistema a una			15	Exposici	ón y expl	licación	de	min	por parte del	Marcadores		
presión	30	Demostración de	min	los ejer	cicios en	plenari	a a		profesor.	Calculadora científica		
determinada, se	min	cálculos de entalpía		cargo de	los alumno	os.				Laptop con/sin conexión a		
pueden determinar		a cargo del docente.							Cierre por parte	internet		
estos valores para			15	Realime	ntación	de	los		del alumno.	Proyector		
así reconocer las			min	ejercicio	s por	parte	del					
implicaciones de				docente.								
los cambios de fase												
Evaluación del apre	Evaluación del aprendizaje: Entrega de ejercicios en la libreta y REFERENCIAS: Cengel y Boyle (2012). Termodinámica. 7ma edición.											
participación en plen	aria.				McGraw I	Hill. Me	éxico.					

Scherer Leopoldo (2008). *Introducción a la termodinámica clásica*. 1era edición. Trillas.

OBJETIVO DE LA SESIÓN 9 y 10: El alumno emplea con dominio el uso de tablas de propiedades termodinámicas en ejercicios de aplicación teórico-prácticos en grupos de clase.

RESUMEN	INICIO	DESARROLLO	CIERRE	RECURSOS Y
Las tablas de propiedades termodinámicas agrupan en orden, diferentes	Recapitulación del uso de las tablas por parte del profesor. 25 Recordatorio del recurso matemático "interpolación lineal" por parte del docente	Demostración de ejercicios que impliquen el uso de las tablas de propiedades por parte del docente; explicación del ADA 5.	30 Realimentación y entrega del ADA 5 por parte de alumno-profesor. 15 min Cierre y despedida por parte del alumno-profesor. Explicación de	MATERIALES DIDÁCTICOS EMPLEADOS Presentación de PPTX Pizarra Marcadores Calculadora científica Laptop con/sin conexión a internet Proyector

TAREA ADA 6 (Presentaciones digitales).

Evaluación del aprendizaje: Entrega de ADA 5 (problemario #2). **REFERENCIAS:** Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

UNIDAD: 3	Gases ideales	OBJETIVO DE LA UNIDAD:	Analiza el comportamiento de la materia en fase gaseosa a partir de la ecuación del gas ideal.
FECHA:	CONTENIDOS:		
7-11 de junio de 2021	3.1 Definición de gas ideal 3.2 Ley de Boyle - Mariotte 3.3 Ley de Charles y Gay – Lussac 3.4 Relación de estas leyes en un c		la obtención de la ecuación de estado de los gases ideales.
14-18 de junio de 2021	3.5 Ley general de gases Ideales 3.6 Energía interna, entalpía y calo	ores específicos de lo	s gases ideales

OBJETIVO DE LA SESIÓN 11 y 12: A partir de la ley del gas ideal, el estudiante emplea sus principios y conceptos fundamentales durante la ejecución de un experimento casero.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
TT '1 1	25	T . 1 1/ 1		F	1.5	D 11.1	MATERIALES
Un gas ideal es un	25	Introducción al		Exposición del ADA 6 en	15	Despedida y	DIDÁCTICOS
gas hipotético que	min	tema y proyección	150	plenaria a cargo de los	min	cierre a cargo	EMPLEADOS
se utiliza como una		del video	min	estudiantes.		del profesor.	
referencia o		"Temperatura y					Presentación en PPTX.
modelo para	15	gases ideales".		Apoyo y realimentación de la			Video:
predecir el	min		35	actividad por parte del			https://www.youtube.com/w
comportamiento de		Análisis y	min	profesor.			atch?v=_fed-zIpTGM
los gases reales.		discusión en					Pizarra
Su importancia		plenaria del video					Marcadores
radica en la		(docente-alumnos).					Calculadora científica
ecuación							Laptop con/sin conexión a
fundamental:							internet
PV=nRT							Proyector

EVALUACIÓN DEL APRENDIZAJE: Entrega y ejecución de experimentos involucrados en el ADA 6.

REFERENCIA: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

Pérez Montiel Hector (2014). Física General. 1ra edición. Grupo editorial Patria.

OBJETIVO DE LA SESIÓN 13: El alumnado explica con su propio vocabulario los resultados de utilizar la ecuación de los gases ideales en la resolución de problemas teórico-prácticos.

RESUMEN	INICIO		DESARROLLO		CIERRE	RECURSOS Y MATERIALES
relaciona las leyes de Boyle, Charles y Lussac al operar	10 Recordatorio de la sesión previa a cargo de los estudiantes con apoyo del docente. 25 apoyo del docente. Presentación del subtema 3.5	min co ec 15 A min re	Resolución de ADA 7 junto on el docente-alumno en quipos de clase. Análisis y discusión de los esultados de los ejercicios por parte del alumnado.	10 min	Realimentación del tema a cargo del docente.	DIDÁCTICOS EMPLEADOS Documento: http://exa.unne.edu.ar/quimi ca/quimgeneral/UNIDADV Gases.pdf Presentación de PPTX Pizarra Marcadores Borrador de pizarrón

EVALUACIÓN DEL APRENDIZAJE: Entrega de ADA 7 (problemario #3) y participación en clase.

Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México.

OBJETIVO DE LA SESIÓN 14: El estudiante discute junto con sus compañeros el significado de calor específico de una sustancia y lo relaciona con ejemplos de la vida diaria.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS	Y
							MATERIALES	
Un sistema	20	Recordatorio de los	40	Explicación de cálculos y	10	Conclusión de	DIDÁCTICOS	
aumenta su	min	conceptos de	min	ejercicios en la pizarra por	min	la unidad.	EMPLEADOS	
temperatura		capacidad		parte del maestro.				

cuando se le suministra cierta cantidad de energía (calor), la relación existente entre el calor y el aumenta de temperatura es conocida como capacidad calorífica de un cuerpo.	calorífica y calor específico de una sustancia (Unidad 2) y su relación con el tema de gas ideal por parte del profesor.	min	parte d	ción de problemas po le los alumnos. nentación de lo mas a cargo de docento o.	os		Presentación en PPTX. Pizarra Marcadores Calculadora científica. Laptop con/sin conexión a internet Proyector
EVALUACIÓN DEL plenaria acerca de los prob		Discusi	ón en	REFERENCIAS: Condo educativo inter		, ,	icoquímica. Segunda edición.

UNIDAD: 4	Conservación de la masa y energía. Primera ley de la termodinámica. OBJETIVO DE LA UNIDAD: Efectúa el balance de energía en sistemas cerrados y abiertos de dispositivos técnicos de ingeniería aplicando la primera ley de la termodinámica al resolver ejercicios planteados.				
FECHA:	CONTENIDO:				
21-25 de junio 2021	4.2 Capacidad térmica específica. Convención de signos.4.3 Concepto de trabajo: Trabajo de eje, trabajo de flujo y trabajo cuasiestático de una sustancia simple compresible.				
28 de junio al 2 de julio de 2021	4.4 El experimento de Joule, relación entre calor y trabajo.4.5 Primera Ley de la Termodinámica. El principio de conservación de la energía. Balances de masa y energía en sistemas cerrados y abiertos.				
5-9 de julio de 2021 12-16 de julio de 2021	4.6 Ecuaciones de balance de energía en sistemas cerrados. Ecuaciones de balance de masa y energía en sistemas abiertos bajo régimen estable, permanente o estacionario, régimen uniforme y en fluidos incompresibles. Balances en sistemas que realizan ciclos. Eficiencia térmica.				
2021	4.7 La energía interna y el calor a volumen constante: la capacidad térmica específica a volumen constante (cv). La entalpia y el calor a presión constante: la capacidad térmica específica a presión constante (cp).				
OBJETIVO DE LA de ingeniería.	SESIÓN 15: El estudiante explica el concepto de trabajo termodinámico al analizar situaciones contextualizadas en el área				

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
En física, el trabajo	15	Recordatorio del	30	Análisis de situaciones y	10	Proyección de	DIDÁCTICOS
se define como la	min	concepto de calor y	min	problemáticas de ingeniería	min	video de	EMPLEADOS
energía utilizada de		capacidad térmica		que involucran trabajo		youtube	
un sistema a otro a		específica.		termodinámico, por parte de		"Energía".	Presentación en PPTX.
través de una				los alumnos.		Explicación de	Video:
fuerza que recorre	15	Exposición del				ADA 8.	https://www.youtube.com/w
un desplazamiento,	min	concepto de trabajo	25	Exposición de las situaciones	10		atch?v=izPZh8Kqd9s&t=2s
en termodinámica		en el contexto	min	en plenaria por parte de los	min	Resumen y	Pizarra
toma el contexto de		termodinámico.		estudiantes (esquema).		cierre por parte	Marcadores
gases contenidos						de alumnos.	Laptop con conexión a
en recipientes que			15	Realimentación de la actividad			internet
se comprimen o			min	a cargo del docente.			Proyector
expanden con la							
ayuda de pistones.							
EVALUACIÓN DI	EL API	RENDIZAJE: Entreg	a del o	esquema REFERENCIA : Cen	gel y	Boyle (2012). To	ermodinámica. 7ma edición.
como participación o	de clase.	•		McGraw Hill. México.			

TAREA: ADA 8 (Práctica 2: calorimetría).

OBJETIVO DE LA SESIÓN 16: Al término de la sesión el estudiante enuncia la relación que existe entre calor y trabajo a través de un mapa mental al exponerlo en plenaria.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS	Y
							MATERIALES	
El trabajo y el calor		Explicación y	20	Exposición del docente sobre		Conclusión del	DIDÁCTICOS	
son las formas de	25	ejecución de un	min	el subtema 4.4	10	tema y	EMPLEADOS	
transmisión de la	min	mapa mental en			min	explicación de		
energía que		equipos, que		Demostración de ejercicios		ADA 9.	Presentación de PPTX	
aparecen al variar		relacione el calor y	25	para cálculos de trabajo			Simulador online:	
los estados de un		trabajo a cargo de	min	termodinámico.			Marcadores	
sistema, son		los estudiantes.					Borrador de pizarrón	

funciones de	10			Ejecución y realimentación de			Calculadora cien	tífica
trayectoria y	min	Exposición de	30	ejercicios de práctica para los			Laptop con c	onexión a
pueden absorber o		mapas mentales en	min	alumnos.			internet	
ceder sus		plenaria.					Proyector	
magnitudes.								
TAREA	ADA	ADA 9 (Cuadro sinóptico interactivo).						

EVALUACIÓN DEL APRENDIZAJE: Entrega de mapa mental.

REFERENCIAS:

Smith J.M., Van Ness. H.C. y Abott M. M (1997). Introducción a la termodinámica en ingeniería química. Quinta edición. McGraw Hill.

OBJETIVO DE LA SESIÓN 17:

Los estudiantes demuestran pertinentemente los principios de la primera ley de la termodinámica a partir de la demostración de la grabación de un video de un experimento casero realizado por ellos mismos.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y MATERIALES
La primera ley de	5	Recordatorio de la	85	Presentación de ADA 9 en	10	Conclusiones	DIDÁCTICOS
la termodinámica	min	sesión 16.	min	plenaria y realimentación de la	min	de la primera	EMPLEADOS
es un enunciado				actividad.		ley a cargo de	
que se fundamenta		Exposición de				estudiantes.	Presentación en PPTX.
en la ley de la	20	cartel "Primera ley					Cartel diseñado en Genially:
conservación de la	min	de la					https://view.genial.ly/6035
energía: "Cuando		termodinámica"					41f29378410d7a22edd1/in
se realiza un		por parte del					teractive-content-ada-2
trabajo o		profesor.					Pizarra
intercambio							Marcadores
energético sobre un							Laptop con/sin conexión a
sistema, su energía							
interna cambiará."							

plenaria.		RENDIZAJE: Parti DN 18: El alumno reali	•		McGraw Hill. México Castellan Gilbert (1980) interamericano.	6). <i>Fis</i>	icoquímica. Seguno	internet Proyector Permodinámica. 7ma edición. da edición. Fondo educativo enunciado de la primera ley de
RESUMEN La primera ley de la termodinámica nos conduce a la relación $\Delta U = Q + W$ que nos indica la cantidad de energía al realizar un trabajo y una transferencia de calor para un sistema.	10 min 30 min	INICIO Recapitulación de la sesión previa a cargo del profesor. Demostración de ejercicios de balance de energía en volúmenes de control.	be 60 Los estu manera de balar sistemas e 15 Realimera actividado			5 min	CIERRE Conclusión y cierre.	RECURSOS Y MATERIALES DIDÁCTICOS EMPLEADOS Pizarra Marcadores Calculadora científica Laptop con/sin conexión a internet Proyector
Evaluación del apren el cuaderno.	Evaluación del aprendizaje: Entrega de los ejercicios resueltos en el cuaderno. REFERENCIAS: Pérez Montiel Héctor (2014). Física General. 1ra edición. Grupo editorial Patria.). Física General. 1ra edición.	
	SESIÓ		os efe		ances de energía para si	stemas		
RESUMEN		INICIO		D	DESARROLLO		CIERRE	RECURSOS Y MATERIALES

Recordando el	60	Resolución de	100		40	Análisis de	DIDÁCTICOS
enunciado de la	min	ejercicios de	min	Los alumnos inician el ADA	min	artículo en	EMPLEADOS
conservación de la		balances de energía		10.		plenaria:	
energía "La	10	en la pizarra.	30			https://www.m	Presentación de PPTX
energía no se crea	min		min	Realimentación del ADA a		<u>undodelmotor.n</u>	Artículo de página web:
ni se destruye, solo		Explicación del		cargo del profesor.		et/termodinami	https://www.mundodelmoto
se transforma"		ADA 10				<u>ca/</u>	r.net/termodinamica/
podemos efectuar		(problemario 4).					Pizarra
análisis de la							Marcadores
cantidad de energía							Calculadora científica
de entrada y salida							Laptop con/sin conexión a
en un sistema.							internet
							Proyector

Evaluación del aprendizaje: Entrega parcial de ADA 10 **REFERENCIAS:** Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

OBJETIVO DE LA SESIÓN 21 y 22: El estudiante explica los ciclos termodinámicos del automóvil a través de la realización de una tabla de integración de conceptos.

integracion de conce	1						
RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
Un ciclo		Recordatorio del	40	Exposición docente sobre			DIDÁCTICOS
termodinámico es	10	artículo de la sesión	min	cálculo de variables	10	Resumen de la	EMPLEADOS
un proceso en el	min	20 por parte de los		termodinámicas de los ciclos.	min	unidad por parte	
cuál el sistema a		estudiantes.				del docente.	Pizarra
través de todas sus			110	Resolución y término del ADA			Marcadores
etapas regresa a la	40		min	10 (problemario 4).			Calculadora científica
inicial. En la	Min	Análisis del ciclo					Laptop con/sin conexión a
mecánica		de Otto y diesel por	15	Realimentación de la actividad			internet
automotriz existen		parte de los	min	con apoyo del profesor.			Proyector
diversos ciclos	15	estudiantes.					
involucrados.	min						

Exposición de s tablas en plenaria				
Evaluación del aprendizaje: Entrega completabla de análisis de ciclos termodinámicos.	ta del AI	OA 10 y		dición. McGraw Hill. México. da edición. Fondo educativo

Segunda levide la fermodinamica	ETIVO DE UNIDAD:	Construye una máquina térmica simple aplicando la segunda ley de la termodinámica con elementos sustentables, de manera creativa y funcional.
CONTENIDO:		
5.1 Segunda ley de termodinámica5.2 Enunciados Segunda Ley: Kelvin-Plan	nck y Clausius	
5.3 Irreversibilidad5.4 Ciclo de carnot5.5 Ciclo de carnot negativo		
5 C Fatanasia		
_ *		
5.8 Rendimiento isentròpico		
	CONTENIDO: 5.1 Segunda ley de termodinámica 5.2 Enunciados Segunda Ley: Kelvin-Plan 5.3 Irreversibilidad 5.4 Ciclo de carnot 5.5 Ciclo de carnot negativo 5.6 Entropía 5.7 Cambio de entropía en el universo	Segunda ley de la termodinámica. CONTENIDO: 5.1 Segunda ley de termodinámica 5.2 Enunciados Segunda Ley: Kelvin-Planck y Clausius 5.3 Irreversibilidad 5.4 Ciclo de carnot 5.5 Ciclo de carnot negativo 5.6 Entropía 5.7 Cambio de entropía en el universo

OBJETIVO DE LA SESIÓN 23: Calcula analíticamente la eficiencia de una máquina térmica a través de los enunciados de la segunda ley de la termodinámica.

termoumamea.							
RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
La segunda ley de	15	Introducción a la	40	Resolución de ejercicios	10	Explicación de	DIDÁCTICOS
la termodinámica	min	segunda ley por	min	problema en equipos de	min	ADA 11.	EMPLEADOS
nos lleva a estudiar		parte del docente.		trabajo.			
a las máquinas			15			Resumen de la	Presentación en PPTX.
térmicas, las cuales		Exposición de los	min	Realimentación de la actividad	10	sesión.	Pizarra
son dispositivos	15	enunciados de		(profesor-alumno).	min		Marcadores
que funcionan	min	Kelvin Planck y					Laptop con/sin conexión a
gracias a ciclos		Clausius					internet
termodinámicos,		Clapeyron.					Proyector
en esta sesión se	15						
pretende estudiar	min						

los enunciados que	Demostración de
nos permiten el	solución de l
entendimiento de	ejercicios en la
esta ley.	pizarra a cargo del
	docente.

EVALUACIÓN DEL APRENDIZAJE: Entrega de ejercicios en la libreta.

REFERENCIA: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

Smith J.M., Van Ness. H.C. y Abott M. M (1997). Introducción a la termodinámica en ingeniería química. Quinta edición. McGraw Hill.

TAREA: ADA 11 (Investigación).

OBJETIVO DE LA SESIÓN 24: Los alumnos en equipos de trabajo demuestran en una investigación los fundamentos termodinámicos de un motor tipo Stirling.

,							
RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
Un motor del Tipo	15	Recapitulación de	65	Exposición de anteproyecto	35	Asesoría	DIDÁCTICOS
Stirling funciona	min	la sesión anterior.	min	(trabajo de investigación).	min	personal por	EMPLEADOS
como un ciclo de						equipo de	
compresión y					5	trabajo a cargo	Presentación de PPTX
expansión, es un					min	del profesor.	Marcadores
motor de							Borrador de pizarrón.
combustión						Recordatorio de	Laptop con/sin conexión a
externa y se emplea						avances del	internet.
en refrigeración,						proyecto.	Proyector
calefacción entre							
otros.							
TADEA	A	as de ADA 12 (Const	:	da matan Ctinlina)			

TAREA Avances de ADA 12 (Construcción de motor Stirling).

EVALUACIÓN DEL APRENDIZAJE: Entrega de ADA 11.

REFERENCIAS:

Smith J.M., Van Ness. H.C. y Abott M. M (1997). *Introducción a la termodinámica en ingeniería química*. Quinta edición. McGraw Hill.

OBJETIVO DE LA SESIÓN 25: Los alumnos en equipos de trabajo comparan el ciclo de Carnot con el Ciclo Stirling con el uso de organizadores de información.

Un ciclo de Carnot,		INICIO		DESARROLLO		CIERRE	RECURSOS Y
es un proceso							MATERIALES
termodinámico	35	Explicación de	30	Actividad en grupos:	5	Conclusión de	DIDÁCTICOS
ideal e hipotético	min	subtemas 5.3, 5.4 y	min	elaboración de un cuadro	min	la sesión por	EMPLEADOS
que se produce en		5.5 a cargo del		comparativo del ciclo Stirling		parte de los	
una máquina		docente.		vs Ciclo de Carnot.	5	alumnos.	Presentación en PPTX.
térmica para la	30		15		min		Pizarra
conversión de calor	min	Demostración de	min	Realimentación de la		Recordatorio de	Marcadores
en trabajo, su		ejercicios en		actividad.		avances de	Calculadora científica
estudio sirve como		plenaria con la				proyecto.	Laptop con/sin conexión a
modelo para		participación de los					internet
máquinas térmicas		alumnos.					Proyector
reales.							

EVALUACIÓN DEL APRENDIZAJE: Entrega de cuadro comparativo.

REFERENCIAS: Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México.

Castellan Gilbert (1986). *Fisicoquímica*. Segunda edición. Fondo educativo interamericano.

OBJETIVO DE LA SESIÓN 26: Los alumnos en equipos de trabajo exponen en PPTX el prototipo de su proyecto del ADA 12 (Construcción de un motor Stirling).

RESUMEN	RESUMEN INICIO			DESARROLLO		CIERRE	RECURSOS Y
							MATERIALES
El producto final	60	Exposición de	30	Sesión de preguntas y defensa		Elaboración de	DIDÁCTICOS
de la unidad 5 es	min	avances de	min	de anteproyecto (alumno-	15	esquema de	EMPLEADOS
la creación de un		proyecto de los		alumno) con supervisión	min	defensa de	
motor Stirling		alumnos.		docente.		proyecto.	Pizarra
Casero, en esta			15				Marcadores
sesión se			min	Realimentación de avances por			Calculadora científica
revisarán los				parte del profesor.			Laptop con/sin conexión a

avances de dicho proyecto.								internet. Proyector
Evaluación del aprendizaje: Entrega de esquema.					REFERENCIAS: Pérez Montiel Hector (2014). <i>Física General</i> . 1ra edición. Grupo editorial Patria.			
OBJETIVO DE LA SESIÓN 27: El alumno deduce la entropía en los sistemas termodinámicos empleando análisis de casos prácticos de ingeniería.								
La segunda ley de la termodinámica nos introduce al concepto de entropía y establece que la cantidad de entropía en el universo incrementa conforme el paso del tiempo, es decir que los sistemas tienden al desorden. Explicación de subtemas 5.6, 5.7 y 30 min Actividad resolver 20 casos an min los estudos entropía de análisis (profesor-alumno) en plenaria Explicación de subtemas 5.6, 5.7 y 30 min Actividad resolver 20 casos an min los estudos en plenaria					en la libreta acerca de álisis, propuestos por	10 min 10 min	Recordatorio de entrega de ADA 12 Sección de dudas y asesoría para la entrega de ADA 12.	RECURSOS Y MATERIALES DIDÁCTICOS EMPLEADOS Presentación de PPTX Artículo de página web: https://www.mundodelmoto r.net/termodinamica/ Pizarra Marcadores Calculadora científica Lap top con/sin conexión a internet. Proyector
Evaluación del aprendizaje: Entrega de análisis de caso.).	REFERENCIAS: Ce McGraw Hill. México	-	Boyle (2012). T	Termodinámica. 7ma edición.
TAREA: ADA 12 (•	,				1 . 1 . 2 . 1	a al exponer la construcción y

OBJETIVO DE LA SESIÓN 28: El alumno demuestra sus conocimientos de la segunda ley de la termodinámica al exponer la construcción y los principios termodinámicos de un motor Stirling Casero.

RESUMEN		INICIO		DESARROLLO		CIERRE	RECURSOS Y MATERIALES
Los motores del		Exposición de los	10	Sesión de preguntas cargo del			DIDÁCTICOS
tipo Stirling debido	60	trabajos de	min	alumnado.	15	Realimentación	EMPLEADOS
al principio	min	investigación			min	y comentarios	
científico con el		equipo por equipo		Defensa de proyecto a cargo		por parte del	Pizarra
que funcionan			20	del equipo ponente.		comité de	Marcadores
pueden construirse	15	Sesión de preguntas	min			maestros.	Calculadora científica
de una manera	Min	a cargo del comité					Laptop con/sin conexión a
sencilla, con		de maestros.					internet.
objetos de fácil							Proyector
acceso para el							
estudiante. En esta							
sesión demostrarán							
el proyecto final de							
la unidad 5.							

Evaluación del aprendizaje: Entrega completa del ADA 12.

REFERENCIAS:

Cengel y Boyle (2012). *Termodinámica*. 7ma edición. McGraw Hill. México. Castellan Gilbert (1986). *Fisicoquímica*. Segunda edición. Fondo educativo interamericano.

SECCIÓN 4: ACTIVIDADES DE APRENDIZAJE

Unidad 1: Conceptos básicos de Termodinámica

Subtemas:

- 1.1 Sistemas de unidades.
- 1.2 Definiciones: sistemas, fronteras, equilibrio, estado, proceso y variables termodinámicas.
- 1.3 Variables termodinámicas intensivas y extensivas (energía, volumen específico, peso específico, gravedad específica, presión, volumen y temperatura).

ADA 1: Problemario #1

	,							
Sesiones a la que	1 y 2							
corresponde:								
Puntaje	5 pts.							
Tiempo de	60 min.							
resolución:								
Inicio	Formar equipos de 2-3 integrantes para resolución de ejercicios aplicativos como tarea para la casa, describir paso a paso el procedimiento empleado cuidando las unidades de medición durante el mismo y para el resultado final, entregar un solo trabajo en carpeta en hojas en blanco con hoja de portada en la sesión 2.							
	La actividad consta de preguntas de análisis y problemas teórico-prácticos que se presentan a continuación.							
	1. CONTESTA LAS SIGUIENTES PREGUNTAS							
	a) Se le solicita a usted hacer el análisis metabólico (de energía) de una persona. ¿Cómo definiría usted el sistema para estos fines? ¿Qué tipo de sistema es?							
	b) Para que un sistema esté en equilibrio termodinámico ¿deben ser iguales la presión y la temperatura en todos sus puntos?							
Desarrollo	c) El volumen específico molar de un sistema (<i>V</i>) se define como la relación del volumen del sistema con respecto al número de moles de una sustancia contenidos en el sistema. ¿Ésta es una propiedad extensiva o intensiva?							
	2. RESUELVE LOS SIGUIENTES PROBLEMAS							
	d) Los humanos se sienten más cómodos cuando la temperatura está entre 65 °F y 75 °F. Exprese esos límites de temperatura en °C. Convierta el tamaño del intervalo entre esas temperaturas							

	 (10 °F) a K, °C y R. ¿Hay alguna diferencia si lo mide en unidades relativas o absolutas? e) El calor específico a presión constante del aire a 25 °C es 1.005 kJ/kg · °C. Exprese este valor en kJ/kg · K, J/g · °C, kcal/kg · °C y Btu/lbm · °F. f) Un hombre pesa 210 lbf en un lugar donde g =M32.10 pies/s². Determine su peso en la Luna, donde g=5.47 pies/s². g) Un vacuómetro conectado a un recipiente indica 30 kPa en un lugar donde la presión barométrica es 750 mm Hg. Determine la presión absoluta en el recipiente. Suponga que ρHg = 13,590 kg/m³.
Cierre	Un integrante del equipo pasará a la pizarra para la explicación y resolución de uno de los problemas resueltos. El resto del alumnado determinará junto con supervisión docente la aprobación de la respuesta.
Recursos y	Problemario 1: basado en Cengel y Boyle (2012). Termodinámica. 7ma
materiales:	edición. McGraw Hill. Pp. 40-42

Unidad 1: Conceptos básicos de Termodinámica

Subtemas:

- 1.4 Funciones y variables de estado.
- 1.5 Ley cero de la termodinámica.
- 1.6 Escalas termométricas (temperatura relativa y absoluta).

ADA 2: Práctica virtual "Termometría"

Sesiones a la	3 y 4									
que										
corresponde:										
Puntaje	0 pts.									
Tiempo de	60 min.									
resolución										
Inicio	Formar equipos de 3 a 4 integrantes para el desarrollo de la práctica 1 (termometría). Cada equipo trabajará con sustancias distintas. Equipo 1: Agua Equipo 2: Alcohol Equipo 3: Benceno Entregar un archivo por equipo en la Plataforma google Classroom en formato PDF para la sesión 4.									
Desarrollo	Resolución de la práctica 1. https://drive.google.com/file/d/1ItcXxnk5OXn3aEnVGT33DPZXEi045HCY/view?usp=sharing									
Cierre	Análisis de los resultados obtenidos y del cuestionario en plenaria.									
Recursos y materiales:	Simulador Online: Curva de calentamiento T f(t): http://labovirtual.blogspot.com/search/label/Curva%20de%calentamiento .									

Unidad 2: Propiedades de una sustancia pura

Subtemas:

- 2.1 Definición de una sustancia pura.
- 2.2 Estados de la materia
- 2.3 Procesos de cambio de fase: líquido comprimido y líquido saturado, vapor saturado y vapor sobrecalentado.

ADA 3: Exposición oral de presentaciones digitales

Sesión a la que	5
corresponde:	
Puntaje	10 pts.
Tiempo de exposición	15 min. máximo por equipo.
Inicio	En equipos de 3 a 4 integrantes investigar en tres fuentes diferentes los siguientes subtemas: Equipo 1: Mezcla saturada de líquido vapor (calidad/título de vapor, cálculos de presión y volumen de vapor húmedo). Equipo 2: Vapor sobrecalentado (tablas de vapor, cálculo de energía interna, cálculo de la temperatura de saturación). Equipos 3: Líquido comprimido (uso de tablas de líquido comprimido, cálculo de la energía interna).
Desarrollo	Con base en tu investigación, realizar una presentación en equipos, en Power Point u otro recurso para presentaciones digitales. Respeta el formato APA para referencias de la información contenida. El trabajo debe contener lo siguiente: Diapositiva 1: Portada con los datos del equipo, nombre de la materia y del docente, título del trabajo. Diapositiva 2n: Características y especificaciones del tema. Diapositiva n: Descripción de 2 ejemplos alusivos al tema, es decir, sucesos que se presentan en la vida cotidiana (incluye imágenes). Diapositiva n+1: Descripción y resolución de dos ejercicios contenidos en un archivo anexo en PDF con el procedimiento paso por paso de acuerdo al tema especificado. Sube tu presentación (un archivo por equipo) en la plataforma Google Classroom para la sesión 5.
Cierre	Exposición de las presentaciones en plenaria. Los equipos oyentes deberán entregar un resumen escrito en su cuaderno sobre las exposiciones de sus compañeros.
Recursos y materiales:	Presentaciones en digital: Canvas: https://www.canva.com/es_mx/ Genially: https://www.genial.ly/es

Unidad 2: Propiedades de una sustancia pura

Subtema:

2.5 Concepto de entalpía.

ADA 4: Cartel virtual sobre "Entalpía"

Sesión a la	7
que	
corresponde:	
Puntaje	5 pts.
Tiempo de	10 min. máximo por equipo.
exposición	
Inicio	En equipos de 3-4 integrantes investiga en tres fuentes distintas el concepto de entalpía.
Desarrollo	De acuerdo con lo investigado elabora un cartel interactivo en equipos, usando CANVAS o GENIALLY donde expliques con tu propio vocabulario el concepto de entalpía. Anexa también las tres definiciones encontradas en tus referencias de investigación, citadas debidamente en formato APA. Proporciona mínimo dos ejemplos aplicados a la vida cotidiana sobre este concepto (elabora un video documental donde aparezca al menos un integrante del equipo, con duración de 2 a 3 minutos para este paso) e inclúyelas en el cartel como enlace. Sube tu cartel (un archivo por equipo) a la plataforma Classroom para la sesión 7.
Cierre	Exposición voluntaria de los carteles en plenaria y sesión de preguntas por parte del docente.
	Carteles virtuales:
	Canvas: https://www.canva.com/es_mx/
Recursos y	Genially: https://www.genial.ly/es
materiales:	<u> </u>
	Editor de videos:
	https://vimeo.com/es/
<u> </u>	

Unidad 2: Propiedades de una sustancia pura

Subtema:

2.6 Estructura de las tablas de propiedades (P, V, T, U y h) termodinámicas de algunas sustancias de trabajo, como el agua y algunos refrigerantes: interpolación y extrapolación lineal.

ADA 5: Problemario #2

que corresponde: Puntaje 5 pts. Tiempo de resolución Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de la	G 14 1										
Tiempo de resolución Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en eresultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál cass será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H₂O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado 250 500 500	Sesión a la	9									
Tiempo de resolución Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de 1 resolución de los problemas, cuidando las unidades de medición durante y en eresultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál caso será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H₂O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado											
Tiempo de resolución Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en e resultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál case será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H ₂ O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado	corresponde:	_									
Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en er resultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál caso será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H ₂ O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado 250 500 500	Puntaje										
Inicio Reunirse en equipos de 3-4 integrantes para resolución de ejercicios práctico teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en eresultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál case será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H ₂ O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72		120 min.									
teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en en resultado final. Entregar en carpeta con portada al docente al finalizar el tiempo establecido par la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál case será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H ₂ O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado	resolución										
la actividad. Los problemas para resolver se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) Una señora cocina carne para su familia, en una cacerola destapada tapada con una tapa ligera y tapada con una tapa pesada. ¿En cuál caso será más corto el tiempo de cocinado? ¿Por qué? b) Una olla con tapa que ajusta perfectamente se pega con frecuenci después de cocinar, y es muy difícil destaparla cuando la olla se enfría Explique por qué sucede eso, y qué haría para quitar la tapa. c) ¿Debe ser igual la cantidad de calor absorbido cuando hierve 1 kg da agua saturada a 100 °C, a la cantidad de calor desprendido cuando se condensa 1 kg de vapor húmedo a 100 °C? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Completa esta tabla para el H ₂ O T (°C) P (kPa) V (m³/kg) Descripción de fase 50 7.72 400 Vapor saturado	Inicio	teóricos en hoja resolución de los	teóricos en hojas en blanco, haciendo una descripción paso a paso de la resolución de los problemas, cuidando las unidades de medición durante y en el resultado final.								
110 350	Desarrollo	la actividad. Los problemas pa 1. CONTES a) Una seño tapada co será más b) Una olla después o Explique c) ¿Debe se agua satu condensa 2. RESUEL d) Completa T (°C) 50	ara resolver se presentara resolver se presentara cocina carne para una tapa ligera y corto el tiempo de cocinar, y es mur por qué sucede eso er igual la cantidad arada a 100 °C, a la 1 kg de vapor húm EVE LOS SIGUIEN a esta tabla para el F P (kPa)	rtan a continuacion TES PREGUNTA ra su familia, er tapada con una tate cocinado? ¿Por que sta perfectamente y difícil destaparle, y qué haría para de calor absorbida cantidad de calor absorbida cantidad de calor a 100 °C? TES PROBLEMA H2O V (m³/kg)	ón: AS: a una cacerola destapada, apa pesada. ¿En cuál caso aé? e se pega con frecuencia a cuando la olla se enfría. quitar la tapa. do cuando hierve 1 kg de or desprendido cuando se AS Descripción de fase						
		110	350								

	 e) Un kilogramo de agua llena un depósito de 150 L a una presión inicial de 2Mpa. Después se enfría el depósito a 40 °C. Determine la temperatura inicial y la presión final del agua. f) Tres kilogramos de agua en un recipiente ejercen una presión de 100 kPa, y tienen 250 °C de temperatura. ¿Cuál es el volumen de este recipiente? 				
Cierre	Un integrante del equipo pasará de manera voluntaria a explicar la resolución de uno de los ejercicios realizados en la pizarra, los demás compañeros junto con el docente determinarán la realimentación del resultado.				
Recursos y materiales:	Problemario 2: basado en Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. Pp. 154-156 Calculadora científica Hojas en blanco				

Unidad 3: Gases ideales

Subtemas:

- 3.1 Definición de gas ideal
- 3.2 Ley de Boyle Mariotte
- 3.3 Ley de Charles y Gay Lussac

ADA 6: Exposición oral de presentaciones digitales

Sesiones a la	11 y 12				
que					
corresponde:					
Puntaje	10 pts.				
Tiempo de exposición	25 min. por equipo.				
Inicio	Organízate en equipos de 3 a 4 integrantes e investiga en tres fuentes distintas el siguiente tema: Concepto y características de un gas ideal (esta sección es para todos los equipos). Posteriormente el docente te asignará un subtema en particular que puede ser: Equipo1: Ley de Boyle Equipo 2: Ley de Charles Equipo 3: Ley de Gay-Lussac Equipo 4: Ley general del estado gaseoso Realiza con tu equipo una presentación en PPTX (o cualquier recurso digital para presentaciones en línea) de acuerdo con lo investigado. Utiliza el formato APA para tus referencias. Sube tu trabajo (uno por equipo) en la plataforma Google Classroom para la sesión 11.				
Desarrollo	Realiza con tu equipo un experimento casero donde demuestres la comprobación de la ley que se te ha asignado. Ejecuta este experimento en plenaria al finalizar la exposición de tu presentación digital durante la sesión 11 y proporciona una explicación del porqué se cumplen los principios correspondientes.				
Cierre	Los compañeros de la audiencia tendrán una sección de preguntas y respuestas para el equipo expositor al finalizar su presentación. Esta actividad será mediada por el docente.				
Recursos y materiales:	Presentaciones innovadoras: Showeet: https://www.showeet.com/es/				

Unidad 3: Gases ideales

Subtema:

3.5 Ley general de gases ideales.

ADA 7: Problemario #3

Sesión a la	13				
que					
corresponde:	5 pts.				
Puntaje					
Tiempo de	60 min.				
resolución	Forms agrinos de tuebeie de 2.4 integrantes y magnellos les cignientes				
Inicio	Forma equipos de trabajo de 3-4 integrantes y resuelve los siguientes problemas teórico-prácticos, describiendo en hojas en blanco el paso a paso del procedimiento, no olvides respetar las unidades de medida durante y en el resultado final.				
Desarrollo	Entrega un solo trabajo por equipo en una carpeta que contengan una hoja de portada con los datos de sus compañeros durante el tiempo asignado para la sesión 13. Los ejercicios se presentan a continuación: 1. CONTESTA LAS SIGUIENTES PREGUNTAS a) ¿Bajo qué condiciones es adecuada la suposición del gas ideal para los gases reales? b) Explica la diferencia entre un gas y un vapor c) Un recipiente cerrado herméticamente contiene agua a 30 °C. La presión de vapor es de 0.0425 bar. Si se añade más agua. ¿Qué sucede con la presión de vapor? 2. RESUELVE LOS SIGUIENTES PROBLEMAS d) Una masa de 2 kg de helio se mantiene a 300 kPa y 27 °C en un contenedor rígido. ¿Qué capacidad tiene el contenedor en m³? e) Un globo esférico de 9 m de diámetro se llena con helio a 27 °C y 200				
	 e) Un globo esférico de 9 m de diámetro se llena con helio a 27 °C y 200 kPa. Determine la cantidad de moles y la masa del helio en el globo. f) Un recipiente rígido contiene un gas ideal a 1 227 °C y 200 kPa manométricos. El gas se enfría hasta que la presión manométrica es de 50 kPa. Si la presión atmosférica es de 100 kPa, determine la temperatura final del gas. 				
Cierre	Un compañero del equipo pasará a la pizarra a resolver uno de los problemas planteados, el resto de los alumnos determinarán junto con el docente la realimentación de la respuesta.				
Recursos y materiales:	Problemario 3: basado en Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. P. 158. Calculadora científica Hojas en blanco				

Unidad 4: Conservación de la masa y energía. Primera ley de la termodinámica.

Subtemas:

- 4.1 Concepto de calor.
- 4.2 Capacidad térmica específica. Convención de signos.
- 4.3 Concepto de trabajo: Trabajo de eje, trabajo de flujo y trabajo cuasiestático de una sustancia simple compresible.
- 4.4 El experimento de Joule, relación entre calor y trabajo.

ADA 8: Práctica virtual "Calorimetría"

Sesión a la	15			
que				
corresponde:				
Puntaje	10 pts.			
Tiempo de resolución	60 min			
Inicio	Formar equipos de 3 a 4 integrantes para el desarrollo de la práctica 2 (calorimetría).			
Desarrollo	Resolución de la práctica 2 en equipos de trabajo. https://drive.google.com/file/d/1G5FDupg2GQpCbdbvu5oGGe4MYreUQpgc/view?usp=sharing Entrega el reporte de tu práctica subiendo un trabajo por equipo a la plataforma Google Classroom para la sesión 15.			
Cierre	Análisis de los resultados obtenidos y del cuestionario en plenaria.			
Recursos y materiales:	Simuladores Online: Equilibrio térmico http://labovirtual.blogspot.com/search/label/equilibrio%20t% C3% A9rmico Curva de calentamiento: http://labovirtual.blogspot.com/search/label/Curva%20de%20calentamiento			

Unidad 4: Conservación de la masa y energía. Primera ley de la termodinámica.

Subtemas:

4.5 Primera Ley de la Termodinámica. El principio de conservación de la energía. Balances de masa y energía en sistemas cerrados y abiertos.

ADA 9: Cuadro sinóptico interactivo

Sesiones a la	16 y 17			
que				
corresponde:				
Puntaje	10 pts.			
Tiempo de exposición	15 min. por equipo.			
Inicio	En grupos de trabajo de 3-4 integrantes investiga en tres fuentes distintas (libro de texto, artículo científico y página web de ciencia) acerca de la primera ley de la termodinámica y su relación, energía, trabajo y calor. Con base en tu información elabora un cuadro sinóptico interactivo utilizando el recurso de tu preferencia (Canvas, Genially, Power Point).			
Desarrollo	Incluye como enlace, un video de un experimento simple donde se aprecie la aplicación de la primera ley (3 a 5 minutos máximo). En el video debe aparecer al menos un integrante del equipo y debe proporcionar una explicación del porqué se cumple las leyes de la termodinámica en su ejemplo. Sube tu trabajo (uno por equipo) a la plataforma Google Classroom para la sesión 17.			
Cierre	Exposición a criterio del docente acerca de los carteles y experimentos realizadas.			
Recursos y materiales:	Cuadro sinóptico interactivo: Canvas: https://www.canva.com/es_mx/ Genially: https://www.genial.ly/es			
	Editor de videos: https://vimeo.com/es/			

Unidad 4: Conservación de la masa y energía. Primera ley de la termodinámica.

Subtemas:

- 4.6 Ecuaciones de balance de energía en sistemas cerrados. Ecuaciones de balance de masa y energía en sistemas abiertos bajo régimen estable, permanente o estacionario, régimen uniforme y en fluidos incompresibles. Balances en sistemas que realizan ciclos. Eficiencia térmica.
- 4.7 La energía interna y el calor a volumen constante: la capacidad térmica específica a volumen constante (cv). La entalpia y el calor a presión constante: la capacidad térmica específica a presión constante (cp).

ADA 10: Problemario #4

Sesiones a la	19, 20, 21 y 22					
que	17, 20, 21 y 22					
corresponde:						
corresponde.	20 nts					
Puntaje	20 pts.					
Tiempo de	210 min.					
resolución						
Inicio	Reúnete en equipos de trabajo de 3-4 compañeros de clase y resuelve los ejercicios que se te presentan a continuación, deberás entregar en hojas en blanco describiendo paso a paso la resolución de estos y cuidando las unidades de medición para el procedimiento y el resultado final. Entrega completa de los ejercicios en una carpeta al finalizar la unidad 22 con portada y datos de los integrantes.					
Desarrollo	portada y datos de los integrantes. 1. CONTESTA LAS SIGUIENTES PREGUNTAS: a) ¿Qué es la energía total? Nombre las distintas formas de energía que constituyen la energía total. b) Si tanto el calor como el trabajo se pueden expresar en las mismas unidades, ¿por qué es necesario distinguir entre ambos? c) ¿Qué pasa con la energía interna de un gas que pasa por (1) una compresión adiabática, (2) una expansión isotérmica y (3) un proceso de estrangulamiento? d) En un gas se produce una expansión adiabática. ¿Realiza el gas un trabajo externo? En caso afirmativo, ¿cuál es la fuente de energía? e) ¿Se puede calentar o enfriar una habitación con solo dejar abierta la puerta de un refrigerador eléctrico? Explique su respuesta. 2. RESUELVE LOS SIGUIENTES PROBLEMAS: f) En un proceso químico industrial, se proporcionan a un sistema 600 J de calor y produce 200 J de trabajo. ¿Cuál es el incremento registrado en la energía interna de este sistema? g) Supongamos que la energía interna de un sistema disminuye en 300 J, al tiempo que un gas realiza 200 J de trabajo. ¿Cuál es el valor de Q? ¿El					

	h) En un proceso termodinámico, la energía interna del sistema					
	incrementa en 500 J. ¿Cuánto trabajo fue realizado por el gas si en el					
	proceso fueron absorbidos 800 J de calor?					
	i) Durante una expansión isobárica, una presión constante de 250 kPa hace					
	que el volumen de un gas pase de 1 a 3 L. ¿Qué trabajo realiza el gas?					
	j) Un gas encerrado en el cilindro de un motor tiene un volumen inicial de					
	2 X 10-4 m3. Luego el gas se expande isobáricamente a 220 kPa. Si					
	durante el proceso se absorben 350 J y la energía interna aumenta 150 J.					
	¿cuál es el volumen final del gas?					
	k) Un refrigerador para refrescos tiene la forma de un cubo de 42 cm de					
	longitud en cada arista. Sus paredes son de un espesor de 3 cm y están					
	hechas de plástico ($K_T = 0.050 \text{ W/m.K}$). Cuando la temperatura					
	exterior es de 20°c. ¿Cuánto hielo se derrite dentro del refrigerador					
	cada hora?					
	l) ¿En cuánto cambia la energía interna de 5g de hielo a 0°c al					
	transformarse en agua a 0°c? Desprecie el cambio de volumen.					
	Realimentación de los ejercicios en plenaria, un compañero del equipo pasará a					
Cierre	la pizarra a resolver un ejercicio seleccionado. El docente junto con los alumnos					
	determinará la respuesta correcta.					
	Problemario No.4 basado en:					
	Cengel y Boyle (2012). Termodinámica. 7ma edición. McGraw Hill. México. Pp.					
	99					
Recursos y	Tippens Paul. Física, conceptos y aplicaciones (2011). 7ma edición. McGraw					
materiales:	Hill. México. Pp. 422 y 423					
	* *					
	Bueche Frederick (2001) Física General. 7ma edición. McGraw Hill. México.					
	Pp. 255 y 261					

Unidad 5: Segunda ley de la termodinámica.

Subtemas:

- 5.1 Segunda ley de termodinámica.
- 5.2 Enunciados Segunda Ley: Kelvin-Planck y Clausius.

ADA 11: Investigación documental

G					
Sesiones a la	23 y 24				
que					
corresponde:					
Puntaje	20 pts.				
Tiempo de	120 min.				
resolución					
Inicio	En equipos de 3 a 4 integrantes investiga en al menos 3 fuentes distintas correspondientes a los últimos cinco años (2016-2021) el ciclo y proceso de funcionamiento de un motor Stirling.				
Desarrollo	Con base en tus resultados elabora con tu equipo un reporte de investigación en WORD en formato APA con los siguientes parámetros: • Portada. • Introducción. • Objetivos (general y específicos) • Marco teórico: (no mayor de 3 cuartillas) y debidamente referenciado. • Procedimiento experimental: Incluye la propuesta de construcción de tu motor Stirling: la lista de materiales a utilizar, layout del diseño y procedimiento experimental. • Cálculos: Determina la eficiencia que tendrá teóricamente tu motor y realiza los cálculos paso por paso. • Conclusiones • Bibliografía y referencias				
Cierre	Utiliza la información para diseñar un motor Stirling casero, por lo que será necesario que incluyas en tu investigación una lista con los materiales que necesitarás para ello. Presenta tu documento en plenaria ante el docente y compañeros de clase.				
Recursos y materiales:	Para consulta de formato APA: https://normas-apa.org/etiqueta/normas-apa-2021/ Puedes apoyarte consultando la bibliografía de Vives Albesa Ángel (2016). Diseño de un motor Stirling. Universidad Politécnica de Catalunya.				

Unidad 5: Segunda ley de la termodinámica.

Subtemas:

- 5.3 Irreversibilidad.
- 5.4 Ciclo de Carnot.
- 5.5 Ciclo de Carnot negativo.

ADA 12: Construcción de un motor Stirling

G • 1	26.27.20					
Sesiones a la	26, 27 y 28					
que						
corresponde:						
Puntaje	40 pts.	40 pts.				
Tiempo de	240 min.					
resolución						
	De acuerdo con lo planteado en tu trabajo de investigación del ADA 11, lleva					
	cabo el procedimiento experimental y realiza una presentación en Power Point					
	donde compares tus resultados teóricos con los experimentales. (Puedes hacer					
			ue se presenta a continua			
		1		,		
		Resultados teóricos	Resultados			
			experimentales			
		Materiales	Materiales			
		Diseño	Diseño (incluye			
Inicio			fotografías y una			
			breve descripción de			
			la construcción)			
		Eficiencia	Eficiencia (incluye			
		Lifetenera	los cálculos)			
		Conclusiones	108 calculos)			
	Conclusiones					
	Sube tu presentación (una por equipo) en Google Classroom en la fecha y hora					
		acion (una por equipo) (en Google Classroom er	i ia iecna y nora		
	establecidas.	, ~ 1	4 44 1	/ 1 1 1		
	Presenta ante tus compañeros, docente titular y comité evaluador el					
Desarrollo	funcionamiento de tu proyecto experimental, explica ante ellos tu presentación					
Desarrono	en Power Point realizada anteriormente.					
	El comité y los compañeros del aula tendrán un turno para hacer preguntas al					
Cierre	equipo expositor por lo que deberás defender tu proyecto de acuerdo con los					
	principios termodinámicos vistos en clase.					
Recursos y	Presentaciones innovadoras:					
materiales:	Showeet: https://www.showeet.com/es/					

SECCIÓN 5: MATERIAL AUDIOVISUAL

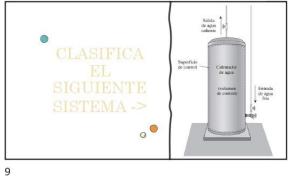
Macromoléculas
semplejas

Simulador

Energia Calor
cinética

3

TIPOS DE FRONTERAS Diatérmica Adiabática Permiten No permite que intercambio de exista calor interacción sistema con los térmica del alrededores. sistema los alrededores



7

PROPIEDADES DE UN SISTEMA

- · Cualquier característica de un sistema se llama **propiedad**. Las cuáles pueden ser intensivas o extensivas.
- · Las propiedades intensivas son aquellas independientes de la masa de un sistema, las propiedades extensivas son aquellas cuyos valores dependen del tamaño o extensión del sistema.

Las propiedades extensivas por unidad de masa se llaman propiedades

específicas.

ESTADO DE UN SISTEMA

Si en un sistema no se experimenta ningún cambio todas las propiedades se pueden medir o calcular, lo que conlleva a un conjunto de propiedades que describe por completo la condición, o el estado, del sistema.

12

POSTULADO DE ESTADO • El número de propiedades requeridas para fijar el estado de un sistema se determina mediante el postulado de estado: "El estado de un sistema compresible simple se especifica por completo mediante dos propiedades intensivas independientes." Nonegono 1 - 25 ° C V - 25 ° C

DIMENSI	ONES Y U	NIDADES
Dimensión	Fórmula	Unidad
Densidad	$\rho = \frac{m}{V}$	$\frac{kg}{m^3}$
Densidad relativa/gravedad específica	$\rho r = \frac{\rho}{\rho_{H20}}$	Adimensional
Volumen especifico	$v = \frac{V}{m} = \frac{1}{\rho}$	$\frac{m^3}{kg}$
Presión	$p = \frac{F}{A}$	$p_a = \frac{N}{m^2}$
Temperatura absoluta	T(K) = T(TC) + 272.35 F(K) = T(T) + 494.41	

13 14

Dimensión	Fórmula	Unidad
Fuerza	F= m.a	N
Presión manométrica, atm y	$\begin{split} P_{\rm simulation} = & P_{\rm obs} - P_{\rm obs} \\ P_{\rm simb} = & P_{\rm obs} - P_{\rm obs} \end{split}$	$p_a = \frac{N}{m^2}$
de vacío.	$Patm = \rho gh$. u m²
Energía • Cinética (Ek)	$Ek = \frac{1}{2}mv^2$	J
• Potencial (Ep)	$Ep = \frac{2}{mgh}$	
Peso	W= m.g	N

EJEMPLOS

- · Un astronauta pesa 730 N en Houston, Texas, donde la aceleración local de la gravedad es g = 9.792 m/s^2. ¿Cuál es la masa y el peso del astronauta en la luna, donde g = 1.67 m/s^2?.
- Se utiliza un manómetro de peso muerto con un pistón que tiene un diámetro de 1 cm para medir presiones con mucha exactitud En una medición en particular, una masa de 6.14 kg (incluidos el pistón y la bandeja) logra el equilibrio. Si la aceleración local de la gravedad es 9 S2 m s/m²2, ¿cuál es la presión manométrica medida? Si la presión barométrica es 748(torr), ¿cuál es la presión absoluta?

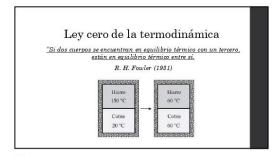
15 16

ACTIVIDAD

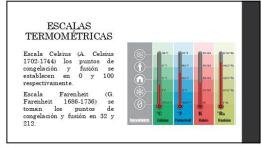
Resuelve los siguientes ejercicios de práctica:

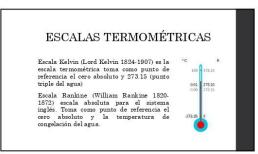
- Con un manómetro de peso muerto se miden presiones hasta de 3 500 bar. El diámetro del pistón es 0.95 cm ¿Cuál es la masa aproximada, en kg, de los pesos necesarios para hacer las mediciones?
- · La lectura de un manómetro de mercurio a 25°C (abierto a la atmosfera por uno de sus extremos) es 43.62 cm. La aceleración local de la gravedad es 9.806 m/s°2. La presión atmosférica es 101.45 kB., ¿Cuál es la presión absoluta, en kPa, medida? La densidad del mercurio a 25°C es 13.534 g cm/m^3.

21 22

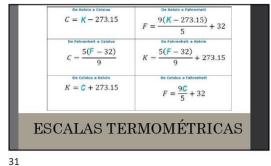


25 26


¡AHORA ES TU TURNO!


¿Qué es lo que mide el termómetro, el calor o la temperatura de un cuerpo?

ACTIVIDAD:


En tu cuaderno identifica y describe un fenómeno de la vida cotidiana, haciendo énfasis en la diferencia de calor y temperatura. Ejemplo: Proceso de ebullición del agua.

27 28

Para conocer el aumento de temperatura que tiene una sustancia cuando recibe calor empleamos la capacidad calorifica $C = \frac{\Delta Q}{\Delta T}$ CAPACIDAD Las unidades de medida pueden ser cal, joule o BTU. Cuánto más alto sea la magnitud de la capacidad calorífica de una sustancia, significa que requiere mayor cantidad de calor para elevar CALORÍFICA Y CAĻOR ESPECÍFICO su temperatura.

33 34

37 38

39 40





7

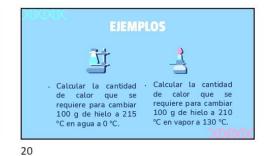
9

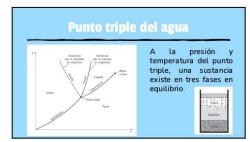
CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO INCORPORADA A LA SEP LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ CURSO ESCOLAR 2021 – 2022

Un vapor que no está a punto de condensarse se denomina vapor sobrecalentado.

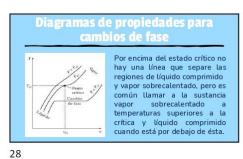
1

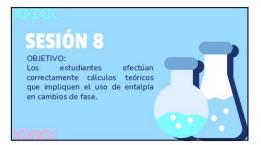
A una determinada presión, la temperatura a la que una sustancia pura cambia de fase se llama temperatura de saturación, Tsat. Del mismo modo, a una temperatura determinada, presión a la que una sustancia pura cambia de fase se llama presión de saturación, Psat.


16 15



21 22





♥ ENTALPÍA

 La energía transferida en forma de calor por un sistema durante un proceso que ocurre a presión constante es igual al cambio en la entalpía del sistema.

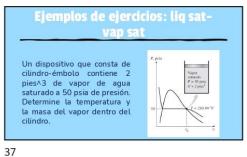
31 32

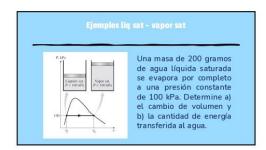
Entalpia

 Aún cuando el calor no es una propiedad del sistema, sí es una medida del cambio en una propiedad fundamental del sistema en el momento que los procesos ocurren manteniendo la presión constante.

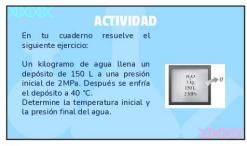
manteniendo la presión constante.

Derivado del griego "enthalpien" que significa calentar se refiere a "el contenido de calor" en un sistema que se mantiene a presión constante.


33 34


Tablas de propiedades Hau Promissades Transconducta del Acua A Tablas de propiedades del Acua A Tablas de Transconducta del Acua A Tablas del Transconducta del Acua A Tablas del Transconducta del Acua A Tablas del Transconducta del Transconducta del Acua A Tablas del Transconducta del Transco

Un recipiente rígido contiene 50 kg de agua líquida saturada a 90 °C.
Determine la presión en el recipiente y el volumen del mismo.


Ejemplos de ejercicios: liq sat-

38

39 40

43

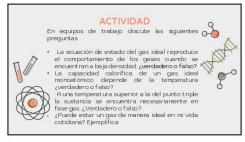
CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO INCORPORADA A LA SEP LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ CURSO ESCOLAR 2021 – 2022

EFERENCIAS V RIBLINGRAFÍA

Pérez Montiel Héctor (2014). Física General. 1ra edición. Grupo editorial Patria.

Smith J.M., Van Ness. H.C. y Abott M. M (1997). Introducción a la termodinámica en ingeniería química. Quinta edición. McGraw Hill.

Yunus y Boyle (2012). Termodinámica. 7ma edición. Mcgraw Hill


13 14

15

20

22

21

http://www2.montes.upm.es/dptos/digfa/cfisica/termo1p/calor.htm

https://es.khanacademy.org/science/ap-

chemistry/thermodynamics-ap/internal-energy-tutorial-ap/a/heat

- Pérez Montiel Héctor (2014). Física General. 1ra edición. Grupo
- Smith J.M., Van Ness. H.C. y Abott M. M (1997). Introducción a la termodinámica en ingeniería química. Quinta edición. McGraw Hill. • Yunus y Boyle (2012). Termodinámica. 7ma edición. Mcgraw Hill.

ं ॐ iGRACIAS! **6 6** REDITS: This presentation template was created by **Sideago**, including icons by **Flaticon**, and infographics& mages by **Frequix**. Please keep this slide for attribution

1

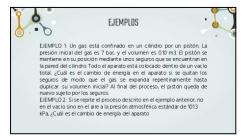

3 4



8

9 10

16



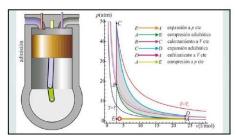
21 22

26

27 28

31 32

CICLO DE OTTO


1. Admisión: la válvula de admisión se abre, permitiendo la entrada en el cilindro de la mezcla de aire y gasolina. Al finalizar esta primera etapa, la válvula de admisión se cierra. Bi pistón se desplaza hasta el denominado punto muerto infenor (PMI).

2. Compresión adlabática la mezcla de aire y gasolina se comprime sin intercambiar calor con el exterior. La transformación es por tanto sentrápica la posición que alcanza el pistón se denomina punto muerto superior (PMS). El trabajo realizado por la mezcla en esta etapa es negativo, ya que ésta se comprime.

3. Explosión: la buja se activa, salta una chispa y la mezcla se enciende. Durant e esta transformación la presión aumenta a volumen constante.

33

39 40

¡AHORA TÚ!	
n base en lo aprendido selecciona uno de	
npleta de manera individual, en tu libreta la sigu SISTEMA	liente tabla:
TIPO DE SISTEMA	
COMPONENTES	
CLASIFICACION DE LAS PAREDES	
TIPOS DE SUSTANCIAS QUE UTILIZA	
PROPIEDADES DE LAS SUSTANCIAS (PUNTOS DE FUSIÓN, EBULLICIÓN, DENSIDAD, VISCOSIDAD)	
TIPO DE CICLO	
DESCRIPCIÓN DE LAS ETAPAS DEL CICLO	

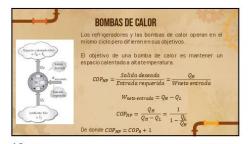
TIPO DE SISTEMA	Es un sistema abierto, ya que permite el intercambio de energía en forma de calor a través de la fricción de los componentes, también permite el intercambio de matería al estar en contacto con el liquido de frenos.	
COMPONENTES	Disco de fricción, plato de presión, carcasa etc	
CLASIFICACION DE LAS PAREDES	Todas las paredes que conforman el sistema son diatérmicas ya que permiten el intercambio de calor entre ellas al estar compuesta en su mayoría de metales.	Oli
TIPOS DE SUSTANCIAS QUE UTILIZA	Líquido de frenos	×
PROPIEDADES DE LAS SUSTANCIAS (PUNTOS DE FUSIÓN, EBULLICIÓN, DENSIDAD, VISCOSIDAD)	DOT 3: Es para frenos convencionales Con un punto de ebullición en seco de 205 °C, en húmedo de 140 °C y una viscosidad de 1500 cSt, este es el más económico y el más común.	E,IEMPI II
TIPO DE CICLO	No aplica	
DESCRIPCIÓN DE LAS ETAPAS DEL CICLO	No aplica	

1



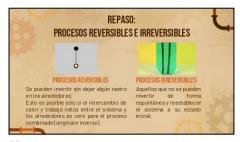
7

9 10



14

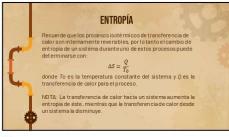
15 16



19 20

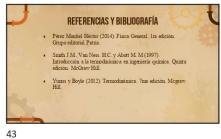
21 22

27 28



31

37 38



39

SECCIÓN 6: *EVALUACIONES*

1er Examen parcial de:		Grupo:	6° ()
Sinodal:	N	o. Reac:	20
Sinodal Suplente:		Fecha:	
Nombre Alumno(a):		Calif:	

INSTRUCCIONES:

- 1. Lee atenta y detenidamente las instrucciones que se te presentarán durante la prueba.
- 2. El valor del examen es de **100 pts.**
- 3. Deberás contestar los reactivos con bolígrafo (rojo, negro o azul), para la sección 4 puedes realizar el procedimiento con lápiz y resaltar la respuesta final con bolígrafo
- 4. Dispones de 2 horas para contestar el examen.
- 5. Durante la prueba no se puede prestar ningún tipo de material ni utilizar teléfono celular por ningún motivo.
- 6. Si durante la prueba tienes dudas acerca de las instrucciones puedes levantar tu mano para que el sinodal acuda a apoyarte.
- 7. Si se te sorprende copiando o revisando apuntes no aprobados por el docente, se te sancionará con la suspensión de la prueba.
- 8. Todo lo evaluado en esta prueba contiene únicamente lo visto en clase.

¡¡Mucho éxito!!

SECCIÓN 1: SUBRAYA LA RESPUESTA CORRECTA COMO VERDADERO-FALSO SEGÚN CORRESPONDA (2 PTS C/U)

- I. La energía transferida en forma de calor por un sistema durante un proceso que ocurre a presión constante es igual al cambio de entalpía en el sistema.
 - a) Verdadero
 - b) Falso
- II. El siguiente sistema consta de paredes adiabáticas:

- a) Verdadero
- b) Falso
- III. Por encima del punto crítico no existe un proceso distinto de cambio de fase y no se puede determinar cuándo ocurrirá dicho cambio de fase.
 - a) Verdadero

- b) Falso
- IV. Los cuerpos no contienen calor.
 - a) Verdadero
 - b) Falso

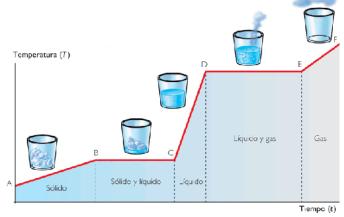
SECCIÓN 2. SELECCIONA Y ENCIERRA LA RESPUESTA CORRECTA (4 PTS C/U)

- V. Una pastilla desodorante de baño presenta este cambio de estado a temperatura normal.
 - a) Evaporación
 - b) Solidificación
 - c) Sublimación
 - d) Fusión
- VI. Si aumenta la presión de una sustancia durante un proceso de ebullición, determina lo que ocurre con la temperatura de la sustancia:
 - a) La temperatura aumenta
 - b) La temperatura disminuye
 - c) La temperatura permanece constante
 - d) La temperatura se convierte en temperatura de saturación
- VII. Si la temperatura aumenta, la velocidad de las moléculas en un gas:
 - a) Es constante
 - b) Es proporcional a la R (constante de los gases)
 - c) Disminuye
 - d) Aumenta
- VIII. Si se tiene agua en las siguientes condiciones, ¿En qué fase se encuentra?

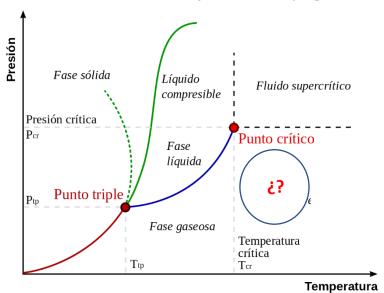
- a) Líquido comprimido
- b) Liquido saturado
- c) Vapor saturado
- d) Vapor sobrecalentado

- IX. Las siguientes características: estructura molecular desordenada, ocupan todo el espacio disponible a su alrededor, son compresibles. ¿A qué estado de la materia representan?
 - a) Sólido
 - b) Líquido
 - c) Gas
 - d) Vapor
- X. Las siguientes características corresponden al comportamiento de un gas ideal, EXCEPTO:
 - Están constituidos por moléculas de igual tamaño y masa para una misma sustancia.
 - b) La colisión entre sus moléculas es elástica.
 - c) Las fuerzas de atracción intermoleculares son despreciables.
 - d) Las moléculas contenidas presentan poco movimiento, básicamente se encuentran en reposo.
- XI. La sal común (NaCl) representa un ejemplo de:
 - a) Mezcla
 - b) Sustancia pura
 - c) Coloide
 - d) Disolución
- XII. ¿Qué tipo de sistema representa el árbol en la siguiente imagen?

- a) Abierto
- b) Cerrado
- c) Aislado
- d) Mixto


SECCIÓN 3. RESPONDE BREVEMENTE LAS SIGUIENTES PREGUNTAS (5 PTS C/U)

I. Un alumno de Ing. de la República de México dice que una taza de café frío en su escritorio se calentó hasta 80 °C, al tomar energía del aire que lo rodea, que está a 25 °C. Analiza y responde si esto puede suceder.


II.	Explica la diferencia entre temperatura y calor

III. Identifica el tipo de transferencia de calor (sensible o latente) experimentado en el proceso B-C.

Respuesta:

IV. De acuerdo con el círculo señalado en el diagrama de fases. ¿A qué fase corresponde?

Respuesta:

SECCIÓN 4: RESUELVE LOS SIGUIENTES PROBLEMAS JUSTIFICANDO EL PROCEDIMIENTO PASO POR PASO. NO OLVIDES UTILIZAR LAS UNIDADES DE MEDIDA DURANTE EL PROCESO Y EN EL RESULTADO FINAL (10 PTS C/U):

- I. Determina la temperatura del agua líquida saturada 35 kpa (Utiliza tus tablas de propiedades termodinámicas).
- II. Ordene de mayor a menor las siguientes temperaturas: a) 0 °C; b) 0°F; c) 260 K;
- III. Un sistema al recibir un trabajo de -170 J sufre una variación en su energía interna igual a 80 J. Determinar la cantidad de calor que se transfiere en el proceso y si el sistema cede o recibe calor.
- IV. Calcular el volumen en m³ que ocupará un gas a una presión de 587 mm de Hg, si a una presión de 690 mm de Hg su volumen es igual a 1500 cm³

FORMULARIO

De Celsius a Farenheit

$$^{\circ}F = \frac{9^{\circ}C}{5} + 32$$

De Farenheit a Celsius

$$^{\circ}C = \frac{5(^{\circ}F - 32)}{9}$$

De Celsius a Kelvin

$$K = {}^{\circ}C + 273.15$$

De Kelvin a Celsius

$$^{\circ}C = K - 273.15$$

De Farenheit a Kelvin

$$K = \frac{5(^{\circ}F - 32)}{9} + 273.15$$

De Kelvin a Farenheit

$$^{\circ}F = \frac{9(K - 32)}{5} + 32$$

Volumen total

$$V = m. v$$

Donde:

v= volumen específico

m= masa

Cambio de volumen total por unidad de masa (evaporación)

$$V_{fg} = V_g - V_f$$

Calidad de vapor

$$x = \frac{m_g}{m_{total}}$$

donde

$$m_{total} = m_f + m_g$$

Calidad de vapor en términos de volumen específico

$$x = \frac{v_{prom} - v_f}{v_{fg}}$$

Energía interna y entalpía en términos de calidad de vapor

$$U_{prom} = U_f + x U_{fg}$$

$$h_{prom} = h_f + h_{f,g}$$

Interpolación lineal

$$(y-y_1) = \frac{(x-x_1)}{(x_2-x_1)} (y_2-y_1)$$

Ley de charles (Isobárico)

$$\frac{V}{T} = K$$

Ley de Boyle (Isotérmico)

$$PV = K$$

Ley de Gay Lussac (Isocórico)

$$\frac{P}{T} = K$$

Primera ley de la termodinámica

$$\Delta U = \mp O \mp W$$

NOTA: Los subíndices f y g se utilizan para referirse a estados líquido y vapor respectivamente

EVALUACIÓN POR PROYECTOS

2do Examen parcial de:		e: TERMOFLUIDOS		Grupo:	6° ()
Sinodal: I.Q.I. LILIANA JAZMÍN CHAN CATZIN				Reac:	N/A
Comité ev	aluador:			Fecha:	
Nombre de los integrantes del				Calif:	
equipo					

Construcción y diseño de un motor Stirling casero

Objetivo: El alumno construye un motor Stirling casero que funciona de acuerdo a los principios de la segunda ley de la termodinámica (máquinas térmicas), utilizando materiales sustentables de forma creativa e innovadora.

La metodología de evaluación por proyectos se basa en la integración de una serie de actividades articuladas entre sí, considerando tres momentos: inicio, desarrollo y fin; cuyo propósito permite plantear un problema contextualizado hacia el área de ingeniería. De esta manera se desea que el cumplimiento de las competencias y objetivos de aprendizaje sean mucho más fáciles de alcanzar para el estudiante.

Este tipo de estrategias consideran un sentido más amplio que la evaluación tradicional, ya que permiten las interacciones como vivencias entre grupos de trabajo, aprendizaje en ambientes diferentes al aula de clases y resolución de problemas in situ.

Debido a tales motivos se planifica este trabajo de la siguiente manera:

Estructura del trabajo:

Actividades de aprendizajes integradas:	ADA 11 y ADA 12
Número de sesiones en la que se desarrolla/	Sesiones 23 a la 28.
tutorías.	
Duración.	360 minutos presenciales.
Puntuación de la evaluación de producto.	60 pts.
ETAPA 1	Comienza a partir de la ejecución del ADA 11
	"Investigación documental" tiene como objetivo que el
	alumno elabore un marco teórico para el desarrollo y
	construcción de sus propias ideas de acuerdo con el
	objeto de estudio para que así, posteriormente en la
	fase de desarrollo e implementación pueda ser capaz
	de dar respuestas a aquellas interrogantes y
	problemáticas que surgieran.

ETAPA 2	El proceso se desarrolla con la elaboración del ADA 12 "construcción de un motor Stirling" en la cual lleva a cabo el diseño experimental planteado en el ADA 11. Durante esta fase el alumno debe demostrar que el conocimiento teórico adquirido puede plasmarse a la realidad, para ello deberá ser capaz de organizarse y trabajar en equipo, utilizar el pensamiento crítico y autorreflexivo a través de una tabla comparativa de análisis y debe demostrar también la habilidad de construcción y uso de herramientas básicas de ingeniería.
ETAPA 3	Para finalizar con el proyecto, los alumnos deben defender su trabajo ante un comité de maestros evaluadores, formado por docentes voluntarios del área de ingenierías, mediante el uso de una presentación virtual y la demostración física del funcionamiento de su motor. Serán interrogados también por sus compañeros de audiencia con el objetivo de fomentar un debate científico que ponga a prueba la adquisición y dominio del tema.

Rúbrica de evaluación

ETAPA 1 (INVESTIGACIÓN DOCUMENTAL)	Excelente	Bueno	Regular	Deficiente
Introducción y objetivos	Se explican de manera clara y en lenguaje formal.	Se explican de manera clara sin embargo falta formalidad en el lenguaje.	Se explican de manera poco clara sin embargo falta formalidad en el lenguaje.	No son explicados de forma clara y es utilizado un lenguaje informal.
Marco teórico	Se presenta información relevante, correctamente referenciada.	Se presenta alguna información relevante, correctamente referenciada.	Se presenta alguna información relevante, pero no está correctamente referenciada.	La información es poco relevante, y no está referenciada.
Procedimiento experimental y cálculos	Se explica todo a detalle e incluye diagramas y fotografías.	Se explica todo a detalle, pero no incluye diagramas o fotografías.	Hubo detalles sin especificar y no incluye diagramas o fotografías.	Contiene muchos detalles sin especificar y no incluye diagramas ni fotografías.
Conclusiones:	Responden claramente a los objetivos especificados.	Responden de manera ligeramente ambigua a los objetivos especificados.	Responden de manera ambigua a los objetivos especificados.	No responde a los objetivos especificados.
Puntuación	20 pts.	13 pts.	7 pts.	0 pts.

ETAPA 2 (DESARROLLO FÍSICO)	Excelente	Bueno	Regular	Deficiente
Funcionalidad	El proyecto armado funcionó correctamente.	El proyecto armado funciona con imperfecciones.	El proyecto funciona de manera imperfecta durante un par de segundos.	El proyecto no funcionó absolutamente.
Estética	El producto final está limpio (sin evidencia de pegamento), no está roto y tiene un acabado fino.	El producto final tiene detalles de materiales sucios, pegamento visible, no está roto y el acabado es ligeramente fino.	El producto final tiene alguna evidencia de materiales sucios, pegamento visible, algunas piezas rotas y el acabado es poco fino.	El producto final está sucio, con pegamento por todos lados, piezas rotas y un acabado imperfecto.
Puntuación	13 pts.	7 pts.	5 pts.	0 pts.

ETAPA 3 (EXPOSICIÓN ORAL Y DEFENSA)	Excelente	Bueno	Regular	Deficiente
Argumentación y debate.	Los estudiantes argumentan con fundamentos científicos su debate demostrando dominio del tema al hablar con claridad y seguridad.	Los estudiantes argumentan algunos con fundamentos científicos su debate y demuestran algún dominio del tema al hablar de manera titubeante.	Los estudiantes argumentan con poca claridad los fundamentos científicos de su debate, demuestran poco dominio del tema al hablar de manera titubeante.	Los estudiantes no son capaces de argumentar con fundamentos científicos su debate y demuestran nulo conocimiento del tema al hablar de manera insegura e incierta.
Puntuación 10 pts.		7 pts.	5 pts.	0 pts.

Examen or	rdinario de	e:	TERMOFLUIDOS		Grupo:	6° ()
Sinodal:	I.Q	.I. LI	LIANA JAZMÍN CHAN CATZIN	N	o. Reac:	20	
Sinodal Su	iplente:				Fecha:		
Nombre A	lumno(a):				Calif:		

INSTRUCCIONES:

- 9. Lee atenta y detenidamente las instrucciones que se te presentarán durante la prueba.
- 10. El valor del examen es de **100 pts.**
- 11. Deberás contestar los reactivos con bolígrafo (rojo, negro o azul), para la sección 4 puedes realizar el procedimiento con lápiz y resaltar la respuesta final con bolígrafo
- 12. Dispones de 2 horas para contestar el examen.
- 13. Durante la prueba no se puede prestar ningún tipo de material ni utilizar teléfono celular por ningún motivo.
- 14. Si durante la prueba tienes dudas acerca de las instrucciones puedes levantar tu mano para que el sinodal acuda a apoyarte.
- 15. Si se te sorprende copiando o revisando apuntes no aprobados por el docente, se te sancionará con la suspensión de la prueba.
- 16. Todo lo evaluado en esta prueba contiene únicamente lo visto en clase.

;¡Mucho éxito!!

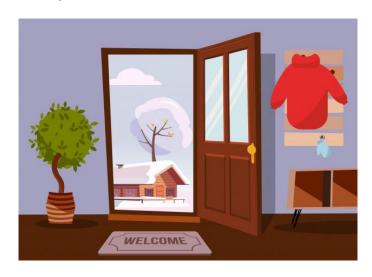
SECCIÓN 1: DE ACUERDO CON LOS SIGUIENTES ENUNCIADOS ENCIERRA LA RESPUESTA CORRECTA SEGÚN SEA VERDADERO O FALSO (3 PTS. C/U)

- 1. Una bomba de calor es un dispositivo que absorbe energía del aire exterior frío y la transfiere al interior más cálido, esta situación es una violación de la segunda ley de la termodinámica.
- a) Verdadero
- b) Falso
- 2. A volumen constante la presión absoluta de un gas es inversamente proporcional a la temperatura absoluta.
 - a) Verdadero
 - b) Falso
- 3. Los termómetros se usan para medir el calor de un cuerpo.
 - a) Verdadero
 - b) Falso
- 4. El calor es un fluido.
- a) Verdadero
- b) Falso

- 5. Si el calor fluye hacia un objeto la temperatura se eleva.
 - a) Verdadero
 - b) Falso
- 6. La eficiencia de una máquina térmica basada en el ciclo de Carnot siempre da resultados mayores al 80%.
 - a) Verdadero
 - b) Falso

SECCIÓN 2. ANALIZA LOS SIGUIENTES ENUNCIADOS Y SUBRAYA LA RESPUESTA CORRECTA (4 PTS. C/U)

- 7. Un gas se comporta como ideal a las condiciones de:
- a) T baja, P baja
- b) Talta, Palta
- c) T baja, P alta
- d) Talta, Pbaja
- 8. Una pared diatérmica:
- a) Permite la transferencia de energía en forma de calor entre el sistema y los alrededores.
- b) Permite transferencia de materia entre el sistema y sus alrededores.
- c) No permite la transferencia de energía en forma de calor entre el sistema y los alrededores.
- d) No permite que el sistema alcance el equilibrio térmico con los alrededores.
- 9. ¿Cuál de los siguientes supuestos para la entalpía es correcto?
- a) Es igual al cambio de calor en un sistema a presión constante.
- b) Es igual al trabajo efectuado en un sistema a presión constante.
- c) Es igual a la energía total de un sistema termodinámico más el cambio de energía interna.
- d) Es igual a la liberación de energía en una reacción endotérmica.
- 10. La cantidad de calor necesario para efectuar un cambio de fase a presión constante es igual
- a) Cambio en la energía interna
- b) Cambio en la entalpía
- c) Calor sensible
- d) Cambio de la energía interna más el cambio de la entalpía
- 11. Si el sistema A está en equilibrio con el sistema B, pero B no está en equilibrio con el sistema C. ¿Qué enunciado representa la relación entre A, B y C?
- a) A, B y C están en equilibrio térmico.
- b) A y C están en equilibrio térmico, pero B no.
- c) A y B están en equilibrio térmico, pero C es un sistema independiente.
- d) A y B están en equilibrio, el sistema C tiene una pared adiabática.
- 12. Si un gas se comprime rápidamente su temperatura aumenta, si un gas se expande su temperatura disminuye. ¿Cuál de los siguientes enunciados justifica su comportamiento?



Respuesta:

CENTRO UNIVERSITARIO REPÚBLICA DE MÉXICO INCORPORADA A LA SEP LICENCIATURA EN INGENIERÍA MECÁNICA AUTOMOTRIZ CURSO ESCOLAR 2021 – 2022

- a) Sucede debido al cambio en la energía interna de las moléculas.
- b) Sucede debido al cambio de la energía potencial.
- c) Sucede conforme a la ley cero de la termodinámica.
- d) Sucede debido al tipo de gas que se utilice.

SECCIÓN 3: ANALIZA LAS SIGUIENTES IMÁGENES Y RESPONDE LAS SIGUIENTES PREGUNTAS (3 PTS C/U):

13.	Respuesta:
14.	¿Cómo fluye el calor, es decir, el aire frío entra o el aire caliente se sale? Respuesta:
15.	¿Qué temperatura alcanzará el aire en la habitación, la temperatura exterior o la temperatura del interior?

De acuerdo con las sustancias presentadas responde lo siguiente:

16. Si ambas sustancias se dejan destapadas en el ambiente, estas se evaporarán. ¿Qué dicen las leyes de la termodinámica sobre este proceso, se trata de un proceso reversible o irreversible?

Respuesta:

Figura A

Figura B

17. ¿Qué figura representa el concepto de entropía? Respuesta:

18	. El proceso de ebullición de agua requiere energía para el cambio de fase, ¿Qué tipo de energía
	es? Selecciona las siguientes opciones: energía interna, entropía, trabajo termodinámico, otro
	(justifica)
	Respuesta:

SECCIÓN 4: RESUELVE LOS SIGUIENTES PROBLEMAS PASO A PASO. NO OLVIDES UTILIZAR LAS UNIDADES DE MEDICIÓN DURANTE TODO EL PROCEDIMIENTO. (20 PTS C/U)

- 19. Determine el cambio en la energía interna de 1.00 kg de agua cuando toda hierve a vapor a 100°C. Suponga una presión constante de 1.00 atm.
- 20. Un motor de gasolina de cuatro cilindros tiene una eficiencia de 0.22 y entrega 180 J de trabajo por ciclo por cilindro. El motor enciende a 25 ciclos por segundo. *a*) Determine el trabajo realizado por segundo.

FORMULARIO

Calor específico

$$Q = mCe\Delta T$$

Capacidad calorífica

$$C = \frac{\Delta Q}{\Delta T}$$

Calor latente de vaporización

$$\lambda_v = \frac{Q}{m}$$

Calor latente de fusión

$$\lambda_f = \frac{Q}{m}$$

Eficiencia térmica

$$\eta_{ter} = \frac{W_{neto}}{Q_{entrada}} = \frac{Salida~de~trabajo~neto}{Entrada~de~calor~total}$$

$$\eta_{ter} = \frac{W_{neto \ salida}}{Q_{entrada}} = 1 - \frac{Q_{salida}}{Q_{entrada}}$$

Trabajo en términos de calor

$$W_{neto} = Q_{entrada} - Q_{salida}$$

cuadro 11.5	Calor latente de fusión (a 1 atmósfera de presión)
Sustancia	λ _f en cal/g
Agua	80
Hierro	6
Cobre	42
Plata	21
Platino	27
0ro	16
Mercurio	2.8
Plomo	5.9

cuadro 11.6	Calor latente de vaporización (a 1 atmósfera de presión)	
Sustancia		λ_{ν} en cal/g
Agua		540
Nitrógeno		48
Helio		6
Aire		51
Mercurio		65
Alcohol etílico		204
Bromo		44